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Abstract

A Methodology for Using Professional Knowledge in Corpus
Annotation

A dissertation presented to the Faculty of
the Graduate School of Arts and Sciences of

Brandeis University, Waltham, Massachusetts

by Amber C. Stubbs

It is a well-known problem that performing linguistic annotation over a corpus can

be an expensive and time-consuming task. The problem of annotation becomes even

more difficult to solve when the task is based around a domain-specific corpus or spec-

ification. For example, extracting diagnosis information from clinical notes must be

done by someone with sufficient medical training, who can understand all of the med-

ical jargon and determine if a diagnosis can be made. However, hiring medical pro-

fessionals to perform syntactic or semantic annotations can be extremely expensive,

and few domain-expert annotators will have the time to create such an annotation.

This dissertation aims at finding a way to capture expert domain knowledge

quickly and easily as annotations, and in a format where the information can then be

used for more advanced natural language processing (NLP) tasks.

To that end, this dissertation proposes the use of light annotation tasks : linguis-

tically under-specified, task- and domain-specific annotation models that can quickly

capture expert knowledge in a corpus as it relates to a research question. The corpora

created from light annotation tasks can then be augmented with additional, denser

annotations (such as part-of-speech tagging), or used directly with an NLP system.

In addition to defining the light annotation task, this dissertation presents a set

of principles that can be used to create annotation tasks for domain experts. These
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principles are based on examining other “light” annotations, as well as the existing

standards and methodologies used in more traditional annotation research. Software

designed for light annotation projects is also presented.

Finally, in order to illustrate the utility of light annotations, a case study based

around the medical research task of finding patients qualified to participate in a clin-

ical study is presented. The medical settings that influence the case study’s design

are discussed, and the light annotation task’s implementation is analyzed. The re-

sulting corpus (called the Patient Evaluation Resource for Medical Information in

Text (PERMIT) corpus) is then leveraged into a preliminary NLP system, which

demonstrates the versatility of the light annotation methodology.
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Chapter 1

Introduction

It is a truism in the natural language processing community that corpus annotation is

both an expensive and a time-consuming task. These two problems are compounded

when the annotation being created requires knowledge that is outside of traditional

linguistic or computational linguistic expertise, such as analysis of biomedical or clin-

ical documentation, or other files that require a working knowledge of a specific

domain.

This dissertation presents a novel methodology for capturing this type of profes-

sional knowledge, where domain experts are required in order to annotate the selected

corpus. This methodology takes the form of a light annotation task, which is a lin-

guistically under-specified annotation model designed to address a particular domain-

and task-specific question. This model can be used to quickly capture expert knowl-

edge in a corpus so that it can later be used as a first layer in a more semantically

complete annotation tasks, or into natural language processing (NLP) systems.

In support of this new methodology, a set of annotation and adjudication software

for light annotation tasks is also presented, and a case study based in the clinical
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CHAPTER 1. INTRODUCTION

domain is used to demonstrate the potential uses of light annotation tasks.

1.1 Motivations

As computers become more adept at providing us with the information that we need,

the information we request of them correspondingly increases in complexity. However,

the more complex the information being requested, the more preparation needs to be

done in order for computers to provide that information. Temporal queries are an

excellent example of this problem: while humans are always asking questions such

as “When was Wilson president?”, for a computer to provide an accurate answer it

must understand the concept of “president”, that “Wilson” was a person, and that a

time-related inquiry is being made.

Questions like this pose serious problems to a computer, and question answering

systems struggle with time-sensitive queries. The standard approach to this problem

is to use data annotated by humans—often linguistic researchers and students—with

appropriate representations of the required knowledge, and to use that data to teach

computers what cues to examine when presented with new queries or texts. The

annotation process is complex and time-consuming, particularly when many aspects

of the data must be represented, such as in the example of Wilson’s presidency.

The annotation problem becomes even more complex when the questions being

asked are ones that require domain-specific1 knowledge to understand and answer,

such as questions related to medical studies. Consider the difficulties of determining

whether a patient has had a heart attack within the past three years. For a computer

1While linguistic knowledge is also a specific domain of learning, standard practices for creating
annotations are generally known to linguistic expert annotators. For the purposes of this dissertation,
“domain expert” and “professional” are taken to refer to domains of knowledge other than linguistics.

2



CHAPTER 1. INTRODUCTION

to make that determination, not only does it need to be able to compute the concept

of “within the past three years”, it also needs to have a reference point—three years

from when? On top of that, in a medical document the term “heart attack” may

be used, but it is more likely to be called a “myocardial infarction”, or “MI”, or

“STEMI” if it is identified as a particular type of heart attack.

The standard approach to data annotation fails here: a linguist is unlikely to be

able to understand the jargon found in medical documents, but a medical expert is also

unlikely to have the time or inclination to complete a detailed linguistic and temporal

analysis of a full corpus of medical documents so that a dataset suitable for NLP can

be created. An additional complication to the problem is cost: a domain expert

who is qualified to answer complex questions on medical data is likely to have had

years of training and experience in the field (for example, an M.D., R.N. or medical

coder), and it is expensive to hire such qualified people for the length of time that

would be required to fully annotate the needed corpus. Due to this overlap of three

difficult problems (complexity, domain-specific knowledge, and cost), a methodology

for creating meaningful annotation tasks that can be performed quickly is needed,

particularly in domains that require expert knowledge to evaluate.

1.2 Goal of this dissertation

In order to address the problems inherent to domain-specific queries (specifically,

queries that are not linguistic in nature) outlined above, this dissertation aims at

defining a methodology that can be used to leverage domain-expert knowledge in the

pursuit of processing complex data. This is done by defining the concept of a light

3



CHAPTER 1. INTRODUCTION

annotation task and providing a set of principles2 for creating these tasks that are

simple enough to not be time-consuming or expensive when hiring experts as anno-

tators, but complete enough that the expert annotations can be used in conjunction

with other annotation layers in order to create a model that can be used in NLP

systems, such as for creating analysis rules or for training machine learning (ML)

algorithms. These ‘light’ annotation tasks are essentially task-specific annotation

models that can be used to quickly capture expert knowledge in a corpus as it relates

to a research question. Light annotations contrast with more traditional annotation

tasks, such as complete part-of-speech tagging or full semantic role labeling, which

are both linguistically complex and textually dense.

1.3 Approach

This dissertation approaches the goal of light annotation for domain experts by first

examining other factors that must affect how such a task is defined, such as how the

expert annotation will fit into existing annotation standards; how it can be used in

conjunction with other annotations; other factors that may influence the success of a

project, such as annotation tools; and finally, how the methodology can be practically

applied to an actual annotation task.

The current standards and general desiderata for annotation research, as well as

existing annotation tasks and tools that have been applied to all types of annotation

tasks (including those that have been used in the bioclinical domain) are examined

in Part I of this dissertation. Based on the results of this research, a methodology

2In a previous publication (Stubbs, 2012) these principles were referred to as ‘guidelines’, but
because the term ‘guidelines’ is already used in the annotation community to describe the instructions
for applying an annotation model to a corpus, ‘principles’ is used here instead.
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CHAPTER 1. INTRODUCTION

is proposed than can be used to create annotation tasks aimed at easily encoding

expert knowledge. A set of annotation and adjudication tools designed to complement

domain expert annotation tasks is also presented.

In order to demonstrate the application of a light annotation task, a case study

is analyzed in Part II of this dissertation. Specifically, this case study involves the

creation of the PERMIT (Patient Evaluation Resource for Medical Information in

Text) corpus, which applies the principles and methodology outlined in Part I to

a set of hospital discharge summaries. These summaries are analyzed by medical

professionals for adherence to predetermined selection criteria. A light annotation

specification is used to encode the relevant data points in the medical records, the

inter-annotator agreement is assessed for the task, and a gold standard created from

the annotations is used for preliminary research into using software to recreate the

annotation results.

1.4 Related Work

Linguistic annotation finds its roots in corpus linguistics, a field which has grown

steadily since the 1960s3, despite the warnings of linguists (most notably, Noam

Chomsky (Chomsky, 1957)) who were wary of relying on corpora for linguistic in-

sight4. While at the time these cautions were not without merit, advances in com-

putational ability and the use of methodologies designed to ameliorate the potential

3Although some researchers place the beginning of the modern corpus linguistics era in the 1980s
(McEnery and Wilson, 1996), as it was not until that time that the field was considered mainstream
in linguistics, the Brown Corpus project (Kucera et al., 1967) began in the 1960s and is generally
regarded as the first large-scale computerized corpus. As such it is reasonable to place the start of
modern-day corpus linguistics there.

4Indeed, as recently as 2004, Noam Chomsky said in an interview that “Corpus linguistics is
meaningless” (Andor, 2004).
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CHAPTER 1. INTRODUCTION

biases in collected corpora led to the eventual growth of corpus linguistics as its own

field of research, which has directly influenced the creation of related fields such as

computational linguistics and natural language processing.

The annotation of natural language plays a large role in many aspects of research

into human language. However, as this dissertation seeks to provide a methodol-

ogy for creating corpora that encode domain expert knowledge in a useful, easy to

obtain manner, the examination of related work is limited to discussions of anno-

tation methodologies and relevant annotation efforts, in particular those relating to

domain-specific tasks. With this restriction in mind, the following sections examine

methodologies as they exist in different corpus-related disciplines.

1.4.1 Annotation Methodologies in Corpus Linguistics

A survey of Corpus Linguistics textbooks and prominent papers reveals a surprising

lack of methodology discussions as they relate to creating manually annotated cor-

pora. While the corpus building process is widely analyzed, and the use of automated

tagging software (such as part-of-speech recognition systems) is often discussed at

length, the actual process of applying tags to a corpus by human annotators is often

mentioned only in passing. The results of manual annotations are discussed, but the

procedure by which such a resource is created has largely been ignored, at least until

recently.

The first general methodology that has been applied to corpus annotation is the

MATTER cycle (Pustejovsky, 2006; Pustejovsky and Stubbs, forthcoming 2012),

which describes a system for creating annotation projects and applying them to ma-

chine learning algorithms. Other than that, the research most relevant to the goal of

6



CHAPTER 1. INTRODUCTION

this dissertation involves other standards and criteria that can be used to inform the

corpus annotation process, such as the Linguistic Annotation Framework (LAF) the

ISO standard for representing annotation data (Ide and Romary, 2006) and Leech’s

seven maxims for annotation tasks (Leech, 1993). These and other established and

emerging standards in corpus annotation will be discussed more thoroughly in Chap-

ter 2.

None of the existing standards or guidelines addresses the added complexity of

capturing domain-expert knowledge in a corpus, although the concept of specific

rather than general annotation tasks is not altogether new. The concept of ‘problem-

oriented tagging’ was first addressed in 1984 by Pieter de Haan (de Haan, 1984),

and annotation tasks that make use of expert-level knowledge are not uncommon,

particularly in the bioclinical domains (Kim et al., 2008; Uzuner et al., 2007; Wilbur

et al., 2006). The following sections will examine these annotation tasks in more

detail.

1.4.2 Problem-oriented Tagging

‘Problem-oriented tagging’ is a phrase coined by Pieter de Haan (1984) to describe

annotation tasks that “only provide information for the problem or structure being

investigated”. In essence, this idea relies on creating a set of tags that is only meant to

reflect a small aspect of the language—only that which is relevant to the phenomenon

being studied. This provides an interesting counterpoint to the majority of annotation

tasks, which rely on defining standard tagsets for entire linguistic sub-fields (such as

part-of-speech tagging, syntactic parsing, etc.) and annotating a corpus with the

entire set of tags. It is easy to see how the concept of problem-oriented tagging could

7



CHAPTER 1. INTRODUCTION

be applied to corpus investigations requiring expert knowledge: by limiting the tags

used to ones that apply only to the question being asked, the annotation project is

automatically simplified and streamlined. However, no theoretical or methodological

framework for creating problem-oriented tagsets is provided by de Haan, nor was

one provided in later years by subsequent researchers, and in fact the concept is often

dismissed or ignored by textbooks on the subject of corpus linguistics and annotation.

For example, in Corpus Linguistics (McEnery and Wilson, 1996), the authors

devote a large section of Chapter 2 to discussing the current standards for annotation

encoding, as well as various types of existing annotation (part of speech tagging,

tree parsing, phonetic transcription, etc). However, no framework for creating tasks

outside of those being discussed is given. In section 2.2.3 they discuss the concept

of problem-oriented tagging, but rather than suggesting a way that such tasks could

be created and used, McEnery and Wilson determine that the problem cannot be

generalized in such a way so as to provide a methodology:

“ [...] problem-oriented tagging uses an annotation scheme which is se-
lected not for its broad coverage and consensus-based theory-neutrality
but for the relevance of the distinctions which it makes to the specific
questions which each analyst wishes to ask of his or her data. In view
of this dependence on individual research questions, it is not possible to
generalize further about this form of corpus annotation, but it is a very
important type to keep in mind in the context of practical research using
corpora.” (pg. 57)

The phrase ‘problem-oriented tagging’ does not seem to have made a lasting im-

pact on the literature of corpus linguistics: it is mentioned again in another book by

McEnery (“Corpus-Based Language Studies” (McEnery et al., 2006)) and in one by

Meyer (Meyer, 2002), but again, no suggestions are made for methodologies for using

this approach. In other books on corpus linguistics and corpus annotation (McEnery

8



CHAPTER 1. INTRODUCTION

and Hardie, 2012; Gries et al., 2010; Wynne, 2005; Geoffrey Sampson, 2004; Garside

et al., 1997; Meunier et al., 2011) , the phrase does not appear to be mentioned at

all, nor do they discuss approaches that utilize a similar strategy under a different

name.

1.4.3 Task-specific Annotations

The lack of specified methodologies for problem-oriented annotation has not, how-

ever, led to a lack of annotation tasks that bear similarities to the problem-oriented

approach. Instead, the phrase “task-specific” has been substituted as a descriptor for

that type of annotation, but still no set of guidelines for task-specific annotations has

been presented.

Annotation projects that are task-specific are fairly common, particularly in con-

ferences and workshops where researchers and labs are invited to participate in shared

tasks and challenges. These shared tasks often involve an initial corpus and dataset

that participants use to build or train systems to perform a particular linguistic

task, such as word sense disambiguation or machine translation. Usually participants

are given only a few weeks or months from the time the data is released to when

they must report on their results or provide working systems to the task evaluators.

Top-performing systems are then presented in the proceedings of the conference or

workshop. While not all of the challenges discussed in this section are only task spe-

cific (some still involve broad part-of-speech tagging or semantic role labeling), most

contain subtasks that can be considered task-specific, such as temporal processing,

named entity recognition, sense disambiguation, and so on.

The first examples of this type of challenge were the Message Understanding Con-

9



CHAPTER 1. INTRODUCTION

ferences (MUC), which were funded by the U.S. government and were focused primar-

ily on named entity recognition and coreference resolution (Grishman and Sundheim,

1996). Seven MUCs were held between 1987 and 1997. While annotating named

entities and coreference are still quite difficult and fairly broad, compared to full

part-of-speech tagging, these annotations are clearly quite task-specific.

The MUCs were promptly followed by SENSEVAL, an “open, community-based

evaluation exercise for WordSense Disambiguation programs” (Kilgarriff and Palmer,

2000). The first SENSEVAL focused on disambiguating words from English, Ital-

ian, and French texts, though in SENSEVAL 2 (2001) the languages studied were

expanded to include Basque, Chinese, Czech, Danish, Dutch, English, Estonian, Ital-

ian, Japanese, Korean, Spanish, and Swedish. SENSEVAL 3 (2004), in addition to

the word sense disambiguation tasks, also examined “semantic roles, multilingual

annotations, logic forms, subcategorization acquisition” (Mihalcea, 2012).

SENSEVAL eventually became SemEval in 2007, which marked an expansion of

the SENSEVAL tasks into a workshop that included not only word sense disambigua-

tion in a variety of languages, but also metonymy resolution, semantic annotation,

and temporal processing (SemEval, 2007). The second SemEval was held in 2010,

and the third will be held in 2012 (Erk and Strapparava, 2010; SemEval, 2012). Each

SemEval workshop hosts a wide range of semantic annotation tasks.

The Conference on Natural Language Learning (CoNLL) has also been hosting

shared tasks as part of its proceedings since 1999. These tasks have included top-

ics such as noun phrase bracketing, chunking, semantic role labeling, and syntactic

dependencies (Sang, 2010).

Similarly, the Text REtrieval Conference (TREC) also hosts shared tasks (referred

to as ‘Tracks’), focused on information retrieval from a variety of document types and
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for a variety of purposes. The TRECs started in 1992 and are still ongoing, with a

variety of different tracks being offered each year (TREC, 2000).

However, while the MUC tasks initially focused on military transmissions, the

majority of the CoNLL and SENS- and SemEval tasks used natural language texts

that did not require extensive training to understand. The semantic content could

be analyzed by the linguists and computer scientists participating in the challenges,

and no domain-specific knowledge was required to create or interpret the annotations.

Additionally, the corpora largely consisted of essays, newspaper articles, and other

similar writing, rather than scientific, medical, or other domain-specific texts.

This is not true of the TREC Tracks, however, as from 2003 through 2007 a

track focused on retrieving genomics data specifically from biomedical texts (Hersh

and Voorhees, 2009). This track was then followed by the Medical Record Track in

2011 and 2012, which was another task specifically designed to examine biomedical

texts. Tasks such as the Medical Record Track and Genomics Track are examples of

domain-specific annotations, which will be discussed in the next section.

1.4.4 Domain-specific Annotations

Task-specific annotations for texts such as newspapers soon led to task-specific anno-

tations for specialized domains, referred to here as domain-specific annotations. Of

particular relevance to this dissertation are those annotation projects and challenges

that have been done for the biomedical and clinical domains, though any type of

annotation task requiring professional knowledge of a subject outside of linguistics or

general language understanding could be considered a domain-specific task. Anno-

tating legal contracts, for example, would be an excellent example of domain-specific
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annotation.

This section provides an overview of corpora and annotation tasks and challenges

in these areas, with a primary focus on clinical resources, as those are more relevant

to the case study presented later in this dissertation.

It is important to note that, as with the previously mentioned tasks and challenges,

the participants are not generally required to annotate their own documents. While

the process by which an annotated corpus was created for use in the task may be

described in a later paper by the tasks organizers, these projects do not represent

systematic annotations undertaken by disparate groups of researchers, but rather

the building of systems for machine learning over the corpora provided. Therefore,

the majority of papers resulting from these challenges do not discuss annotation

methodologies, but rather the ML techniques used to approach the challenge.

Similarly, most other papers and articles relating information about NLP research

projects undertaken in any area of natural language research, including the biomedical

and clinical domains, do not usually discuss general methodology strategies, but in-

stead provide information about their own annotation experience, such as the number

of annotators, inter-annotator agreement scores, and other task-specific information.

Papers that do discuss some aspects of methodologies in clinical and biomedical an-

notation will be discussed in Chapter 4. Because this dissertation utilizes a case study

of clinical documents, the next sections focus primarily on resources and annotations

in the biomedical and clinical domains.

Extant Biomedical and Clinical Corpora

In order to perform domain-specific annotations, an appropriate domain-specific cor-

pus must be assembled. The GENIA corpus (Kim et al., 2003) has been used for

12
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numerous biomedical annotation projects, including both private research and shared

tasks and challenges (BioNLP2011, 2011; BioNLP2009, 2009; Farkas et al., 2010; Kim

et al., 2008; Zhou et al., 2004). The GENIA corpus is comprised of roughly 2,000

MEDLINE abstracts and articles, which were selected by searching for the terms

human, blood cell, and transcription factor (Kim et al., 2003).

In addition to the GENIA corpus, there are a number of other biomedical corpora,

many of which are made up of MEDLINE abstracts, including the PDG (Protein

Design Group) corpus (Blaschke et al., 1999), the YAPEX corpus (Franzén et al.,

2002), and the University of Wisconsin corpus (Craven and Kumlein, 1999). A fairly

up-to-date list of available biomedical corpora can be found here: http://compbio.

ucdenver.edu/ccp/corpora/obtaining.shtml.

While biomedical corpora do require domain expert knowledge to interpret, the

few existing corpora of clinical records are more germane to the case study presented

in this dissertation. Unfortunately, one of the greatest hurdles facing researchers in-

terested in clinical annotations and NLP is that it is extremely difficult to obtain

permission to access patient medical record information for research purposes unless

one is affiliated with a hospital. Chapman et al. (2011) suggest that due to “con-

cerns regarding patient privacy and worry about revealing unfavorable institutional

practices, hospitals and clinics have been extremely reluctant to allow access to clin-

ical data for researchers from outside the associated institutions”. Even when an

affiliation is present, the use of medical records will often only extend to the people

directly involved in the research, and so any annotations or corpora used for research

cannot be shared with others without the data being thoroughly de-identified, and

sometimes even then it is not possible to obtain the proper permissions to distribute

the annotated texts.
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As a result of this situation, very few publicly available clinical corpora exist,

and often papers written about tools for parsing Electronic Health Records (EHRs—

sometimes called Electronic Medical Records, or EMRs) describe results obtained on

data that is not available to other researchers. For example, Pakhomov et al. (2006)

developed a hand-annotated corpus of clinical notes for testing how accurate a Penn

TreeBank-trained part-of-speech tagger would be in the medical domain. They dis-

covered that having a domain-specific training set greatly increased the accuracy of

the tagger, but it appears that this training set has not been made available for others.

Similarly, the set of discharge summaries used by Cao et al. (2004) for summariza-

tion, the clinical notes used by Friedman et al. (2004) for automatically determining

medical codes, the discharge summaries used by Long for diagnosis extraction (2005),

the medical records used in the CLEF annotation project (Roberts et al., 2007), and

the corpus of clinical documents from the VA used in an annotation project by South

et al. (2009) are all private resources at the time of this writing.

Fortunately, there are some datasets of medical records that have been sufficiently

de-identified to be made mostly public, and these are available to researchers who

register for access to them. The University of Pittsburgh’s BLULab has a repository of

de-identified medical records (http://nlp.dbmi.pitt.edu/nlprepository.html),

which include almost 8,000 discharge summaries, as well as radiology reports, progress

notes, and so on. Similarly, the BioScope corpus (Vincze et al., 2008) consists of

clinical texts including radiology reports, as well as full papers and abstracts from

the biomedical domain.

The largest resource of available medical records is the MIMIC II Clinical Database

(MCD), a collection of de-identified medical records that includes nursing notes, dis-

charge summaries, ICD9 codes, and more. The documents in the MCD have been
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de-identified by removing patient, doctor, and hospital names, and by systematically

changing the dates in each patients files (the consistency of the temporal relationships

within each patient’s records was maintained, so it is still possible to perform tem-

poral reasoning over the data provided) (Clifford et al., 2010). The available portion

of the MCD consists of 26,588 patient records from the Intensive Care Units of Beth

Israel Deaconess Medical Center in Boston.

In terms of annotation methodology, it is vital that any annotation project have

a suitable corpus of relevant and accurate data to analyze. The restrictions placed on

the sharing of clinical data make this a more difficult hurdle to overcome than other

domains of expert annotation, but the existing clinical corpora do provide starting

points for research into the clinical domain, even for researchers who are not affiliated

with hospitals or other medical facilities.

Overview of existing biomedical and clinical annotations and shared tasks

Some of the available biomedical and clinical corpora were created as a result of

domain-specific challenges and shared tasks that were affiliated with biomedical NLP

conferences and workshops. In addition to the aforementioned TREC genomics and

medical records tracks (Hersh and Voorhees, 2009; TREC, 2000), the BioCreAtIvE

(Critical Assessment for Information Extraction in Biology) workshops have been

hosting tasks ranging from gene mention tagging, gene normalization, interactor an-

notation to the more recent (2011) tasks related to biocuration workflow (BioCre-

AtivE, 2006). Similarly, in 2009 and 2001 the BioNLP workshop hosted main shared

tasks related to bio-event extraction and domain recognition, as well as supporting

tasks such as identifying co-reference, entity relations, and negation (BioNLP2011,

2011; BioNLP2009, 2009; Kim et al., 2009).
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Of special relevance to this dissertation are the i2b2 (Informatics for Integrating

Biology and the Bedside) Center’s shared tasks, which have focused exclusively on

extracting medical information from clinical documents. The i2b2 challenges usually

have a gold standard corpus associated with them for training, and previous tasks have

involved identifying obesities and co-morbidities, coreference labeling patient smoking

status, extracting medication names and dosages and finding relations between events

and entities (Uzuner, 2008; Uzuner et al., 2012; i2b2 team, 2011; Uzuner et al., 2010a;

Uzuner et al., 2010b; Uzuner et al., 2007).

In addition to annotations and corpora associated with shared tasks and chal-

lenges, individual groups have pursued their own clinical annotation projects. For

example, the CLinical E-science Framework (CLEF) collaboration from Sheffield

University resulted in semantic annotation tags and guidelines specifically for pa-

tient medical records (Roberts et al., 2008; Roberts et al., 2007). The tags and

guidelines are currently available to anyone from http://nlp.shef.ac.uk/clef/

TheGuidelines/TheGuidelines.html, though the corpus is not. There have been

a plethora of other annotation efforts over medical documents, including temporal

annotations for ordering events (Zhou et al., 2007; Bramsen et al., 2006), medication

information extraction (Gold et al., 2008), relating EHRs to ICD9 codes (Friedman

et al., 2004), phenotypic information related to Inflammatory Bowel Disease (South

et al., 2009), uncertainty and negation (Vincze et al., 2008), anaphoric relations and

coreference (Savova et al., 2011; Cohen et al., 2010), medical disorders (Ogren et al.,

2006), document structure (Denny et al., 2008) and part-of-speech tagging (Pakhomov

et al., 2006). Naturally, this is not a complete list of all annotation tasks performed

over clinical text, but it is a roughly representative sample of existing biomedical and

clinical annotations.
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As with the majority of other publications on annotation projects, these papers

do not contain discussions of general methodology, though they do often contain in-

formation about specific aspects of their tasks, such as number of annotators, the

annotation goal and specification, and other relevant information about their corpus.

In fact, some of these annotation tasks can be considered to be light in the “under-

specified” sense used in this dissertation. While again, these light annotations do

not discuss general methodologies for those types of annotations, an analysis of those

tasks in conjunction with the case study in Part II of this dissertation led to the

development of the light annotation principles discussed in Chapter 4.

1.5 Overview

This dissertation proposes a novel methodology for taking advantage of domain expert

knowledge in the form of light annotations tasks by examining existing annotation

standards and best practices as well as existing domain expert annotation tasks. It

also presents annotation and adjudication tools made for light annotations tasks, and

examines a case study involving an annotation in the clinical domain to demonstrate

the applicability of light annotation tasks. To that end, the rest of the dissertation

is organized as follows:

PART I: Annotation Standards, Methodologies, and Tools

� Chapter 2 examines the desiderata of linguistics corpus annotation, includ-

ing existing and emerging standards in the annotation community, particularly

annotation representations, tools, and processes;
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� Chapter 3 describes the MATTER cycle, the first methodology for linguistic

annotation that can be applied to all levels of linguistic annotation;

� Chapter 4 explores the problems with utilizing domain expert knowledge in

annotation projects, defines the concept of “light annotation”, and explores

existing light annotation tasks, particularly in the biomedical and clinical do-

mains. Finally, it presents principles and a methodology for creating new light

annotation tasks;

� Chapter 5 describes annotation and adjudication tools created for capturing

expert knowledge using light annotations;

PART II: The PERMIT Corpus: a case study in using light annotation

� Chapter 6 presents the medical research settings for the case study, including

an overview of epidemiological studies, examinations of selection and matching

criteria, the format of discharge summaries and information about temporal

expressions in both eligibility criteria and medical records;

� Chapter 7 discusses how the methodology from Chapter 4 was applied to

the creation of the PERMIT corpus, as well as how the corpus was selected,

considerations for future annotation tasks, and the adjudication of the gold

standard;

� Chapter 8 analyzes the information in the PERMIT corpus and shows how

the light annotation can be leveraged into a basic NLP system. Performance

of the system is compared to baseline scores generated by machine learning

algorithms;
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� Chapter 9 summarizes the contributions of this dissertation, and discusses

future improvements and applications of this research.
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Chapter 2

Desiderata of Annotation Tasks

Any methodology for domain expert annotation tasks must be created in accordance

with current accepted standards (and identified standards that are still under devel-

opment) for linguistic annotation tasks. Because light annotations can only exist in

the context of more traditional annotation tasks, the literature review provided in this

chapter examines the different aspects of natural language annotation. This allows

the proposed methodology and principles to be grounded in current best practice as

described in the literatures of corpus linguistics, as well as biomedical and clinical

NLP.

2.1 Corpus Creation and Selection

As noted in Chapter 1.4, natural language processing has its roots in corpus linguis-

tics, and it is there that we find some of the most in-depth discussions regarding

corpus selection, particularly with regards to creating corpora that are representative

and balanced. At this time, there are no existing all-purpose guidelines that can be
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used to determine exactly when a corpus can be deemed appropriate for analysis in

general or for one task in particular, and this dissertation does not attempt to create

such guidelines. Below is an overview of what has been written on this topic to date,

both in corpus linguistics in general and the biomedical domain in particular.

McEnery et al. (2006) paraphrase Leech’s (1991) definition as follows: “a corpus

is thought to be representative of the language variety it is supposed to represent if

the findings based on its contents can be generalized to the said language variety”

(pg. 13). However, it is no mean feat to determine if a corpus can, in fact, be

used to generalize about its subject matter. If a corpus is being collected to provide

an overview of, for example, American English then it will need to provide broad

coverage of all different genres, styles, registers, and so on. Meyer (2002) provides an

excellent overview of all the potential factors that can affect whether a corpus can be

determined to be sufficiently representative.

Much like the distinction between general and task-based annotations, corpora

that are assembled for particular purposes—such as to examine a particular linguistic

construction (e.g., passive voice) or to provide a resource for annotation and ML

testing of some type of reasoning (e.g., temporal analysis)—will have different criteria

for what it means to be “representative”. For a corpus exploring passive voice, is it the

genres and styles of the text that the examples come from that is important, or is it

the form of the sentences that the passive constructions are in? Biber (1993) suggests

that “Representativeness refers to the extent to which a sample includes the full range

of variability in a population” (where ‘population’ refers to, essentially, the scope of

the corpus being explored). However, he notes that the theoretical considerations

the corpus is being collected to examine will determine what population should be

explored.
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Similarly, ‘balance’ can be defined in different ways as well. In some cases, a corpus

is considered to be balanced when it contains roughly equal numbers of examples of

all types of the text it is meant to represent. On the other hand, some corpora

require that the different types of examples be proportional to how each type is

represented in the real world. This can be particularly important in corpora that will

be used for machine learning purposes, as a disproportionate number of examples of

a particular linguistic construction can cause an algorithm to apply a particular label

more frequently than would be seen in actual natural language.

Clearly, representativeness and balance are not easy concepts to define, as they

are quite context-dependent. In general, a good rule of thumb for corpus creation is

that ‘bigger is better’, however this can be difficult to apply to corpora that will be

annotated, as the annotation process is time-consuming and can be quite expensive,

particularly when annotators need to be experts in a particular field. The idea of

always having more data is also complicated when a corpus is being compiled in a

domain-specific field, where large amounts of data may simply not be available (as is

the case with clinical data; see Section 1.4.4).

On the topic of domain-specific corpora, Cohen et al (2005) examined corpus de-

sign for biomedical processing. Their study primarily focuses on the attributes that

an annotated corpus should have in order to be widely used/useful, rather than solely

on the factors that should be considered when finding documents for the corpus.

The factors they identified as significant are: 1) recoverability of original text and

annotations, 2) availability of guidelines and documentation, 3) balance and repre-

sentativeness, 4) presence of annotation1.

1Cohen et al. make a distinction between a corpus, which they define as a set of annotated data,
and a ‘text collection’, which they define as “textual data sets that [...] do not contain mark-up of
the document contents”. As this is a non-standard usage of the term ‘corpus’, it will not be used
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While not being strictly about the corpus building process, Cohen et al.’s paper

does address other factors that should be considered when creating any annotated

corpus, not just ones in the biomedical domain. Indeed, these suggestions are echoes

of other guidelines that have been suggested in the past (as the authors themselves

note), and ones that are still being implemented today, as will be discussed later in

this chapter.

In terms of domain-expert annotation tasks, the size of the corpus and the need

for representativeness and balance must be weighed against the potential cost of the

annotated resource being created, as well as the ultimate goal of the annotation task.

The “bigger is better” corpus rule is one that conflicts sharply with the restraints

that often restrict domain-expert annotation tasks, where time and money can limit

how much data can be annotated by a domain-expert consultant. However, this

very conflict highlights the need for a light annotation layer that can capture the

information that requires an expert to interpret without demanding an excessive

amount of time be dedicated to the task.

2.2 General Annotation Desiderata

One of the sources that Cohen et al. (2005) cite in their analysis of successful corpora

was Leech’s seven maxims for annotation schemes (1993). These maxims are some

of the first guidelines published for determining how to create an annotation task.

Though they are generic enough in scope to not truly be guidelines for an annotation

methodology, they have had a lasting impact on the field of corpus annotation and

must be considered in any review of the literature. These maxims are paraphrased

further in this dissertation.
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below:

1. The annotation should be easily separated from the corpus– “the raw

corpus should be recoverable”;

2. Similarly, the annotations should be able to stand alone, away from

the corpus as well;

3. The scheme should be based on symbols, definitions, and guidelines

that are available to the users of the corpus;

4. The information about how the annotation was created and who

performed the annotation should also be available;

5. The scheme cannot claim to be, or be presented as, the only way of

representing the task being undertaken;

6. Annotation schemes should be based on theory-neutral analysis of

data;

7. No single annotation scheme should be held up to be the ‘standard’,

though emergence of data standards should be encouraged.

Most of these maxims have been incorporated into the canon of what is considered

best practice for corpus building: maxims 1 and 2 define how the annotation data

should be separable from the main corpus, an idea that has been encoded into the

Linguistic Annotation Framework/Graphical Annotation Framework, which will be

discussed further in Section 2.3; maxims 3 and 4 have been incorporated into annota-

tion guidelines and reporting suggestions, which will be discussed in Section 2.4, and

the remaining maxims refer to the way that the annotations should be regarded by

the community.
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In what at first appear to be a violation of maxims 5-7, there has been a movement

to standardize some aspects of language annotation. For example, the ISO (Interna-

tional Organization for Standardization) has standards for annotation representation

(the aforementioned LAF/GrAF), as well as standards for some semantic annota-

tion tasks, temporal representation (Pustejovsky et al., 2010), spatial representation

(Pustejovsky et al., 2011), word segmentation (ISO-24614, 2011), and other stan-

dards, managed under the ISO group TC 37/SC 4. However, while efforts have been

made to standardize the specifications and guidelines for these tasks, these remain de

facto rather than de jure standards in the annotation community, and many offshoots

and variations of all types of annotations exist, so the spirit of the last few maxims

is still preserved. These aspects of annotations are discussed further in Section 2.3.

2.3 Annotation Representation

As previously mentioned, the Linguistic Annotation Framework (LAF) (Ide and Ro-

mary, 2006) exists as an ISO standard for representing annotation data for a corpus.

Other suggestions for standards have been made over the years (such as those put

forth by the Text Encoding Initiative (TEI, 1987) and the Corpus Encoding Stan-

dard (CES, 1996)), and LAF provides models for encoding data that aim to “provide

a standard infrastructure for representing language resources and their annotations

that can serve as a basis for harmonizing existing resources as well as developing new

ones” (Ide and Romary, 2007).

Rather than dictate the format that annotations should take, LAF simply requires

that any format used be mappable to an abstract data model that is defined by a rigid

“dump” format. The creators of an annotation scheme are asked to provide a schema
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that maps their corpus annotation to the dump format, which allows all annotation to

be convertible from one form to another (Ide and Romary, 2007). LAF also embraces

stand-off annotation as a standard for annotation representation (Ide et al., 2003),

where the annotations are kept separate from the data being annotated to maintain

the integrity of the corpus.

LAF also specifies the creation of a Data Category Registry (DCR), which will

be used to harmonize the content of different annotations by providing a resource

for finding “pre-defined data elements and schemas” (Ide and Romary, 2007). As of

the writing of this dissertation, a preliminary version of the DCR exists as http:

//www.isocat.org/.

The Graphical Annotation Framework (GrAF) is an extension of LAF that pro-

vides a platform for merging, analyzing, and visualizing disparate annotation struc-

tures by creating an XML serialization of LAF’s dump format (Ide and Suderman,

2007). GrAF has been used effectively to transmute output from various annotation

systems, such as Apache’s UIMA (Unstructured Information Management Applica-

tions) (Ide and Suderman, 2012).

While the LAF and GrAF standards are still primarily de facto standards, despite

their ISO affiliations, they provide a solid base for representing linguistic annotations

that can be used to maximize interoperability between different annotation schemas

or specifications.

The focus of LAF and GrAF on interoperability is supremely important to the

idea of light annotation tasks. As these tasks are designed to be augmented with other

annotations in order to maximize output from automated systems, it is imperative

that any light annotation task be created in a format that will not conflict with tags

or labels that are applied to the data later on. In particular, the use of stand-off an-
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notation to represent light annotations is an effective way to address this issue. While

some have objected to the use of stand-off annotation on the grounds that it leads

to a loss in performance when being queried compared to more ‘traditional’ in-line

annotations (Dipper et al., 2007), these objections are based on the software available

to process those formats. Not only has that software improved as more people use

stand-off formats for annotated data, but the importance of interoperability trumps

any lags in performance that may be experienced.

Clearly, any light annotation task should still adhere to existing guidelines for

representation, particularly ones that help ensure compatibility between annotation

schemes. Because light annotations are meant to capture only expert knowledge, not

linguistic knowledge, it is necessary that the light annotation representation be one

that can be augmented with other annotation schemes, so as to maximize the ability

to leverage the encoded expert knowledge.

2.4 Annotation Guidelines and Reporting

In the annotation community, “annotation guidelines” refer to the instructions given

to the annotators to create the annotated corpus, While there is no set standard

for what information about an annotation task should be made available to users

of the corpus, or how the guidelines should be written or presented, there has been

discussion of those topics that help inform annotation creators as to what aspects

of their work others find useful. For example, the following list of guideline users is

paraphrased/restructured from Dipper et al. (2004a):

� The annotator : Annotators apply the annotation specification (the tags and

attributes) to the chosen corpus by following the annotation guideline instruc-
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tions. Interests: the goal of the annotation, and how to apply the annotation

specification to the corpus.

� The corpus explorer : Explorers are interested in using the corpus to examine

linguistic theories. Interests: how to find examples of linguistic phenomena and

interpret the annotation, information about the corpus itself.

� The language engineer : Engineers want to use automatic methods to explore

the corpus and annotations; for example: through extracting linguistic informa-

tion through evaluation scripts, or using the corpus to train machine learning

algorithms. Interests: tagsets, corpus creation methods.

� The guideline explorer : The annotation guidelines themselves are of interest to

linguists who want to understand the theory behind the annotation, or peo-

ple who want to create their own guidelines for a different annotation task.

Interests: guideline creation and underlying theory.

� The guideline author : Because guidelines often have to be revised multiple times

before a task, the guideline authors themselves will often need to refer back to

their own work to ensure the coverage of the guidelines is complete. Interests:

clear organization of instructions.

It should be noted that Dipper et al. (2004a) use the term ’guidelines’ to refer to all

the information relevant to researchers, including information about the corpus, the

linguistic theory, the annotation, and so on, while this dissertation uses the traditional

definition of ‘guidelines’, as described at the beginning of this section. However,

despite this terminological difference, Dipper et al. make excellent points about the
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information that should be made available when an annotated corpus is released to

the public based on the different interests of various types of researchers.

Another recent study by Bayerl and Paul (2011) examined what factors in an

annotation task may influence inter-annotator agreement (IAA) scores. They exam-

ined 96 annotation tasks over three categories of study (word-sense disambiguation,

prosodic transcriptions, and phonetic transcriptions), and were able to identify seven

aspects of annotation tasks that influenced IAA scores: “annotation domain, num-

ber of categories in a coding scheme, number of annotators in a project, whether

the annotators received training, the intensity of annotator training, the annotation

purpose, and the method used for calculation of percentage agreements” (Bayerl and

Paul, 2011). For the purposes of this dissertation, however, the factors influencing

IAA scores are less interesting than the fact that the authors wanted to analyze more

factors that could affect annotation, but couldn’t find enough consistent reporting on

those factors in the studies that they looked at to determine statistical significance.

As a result of this lack of information, Bayerl and Paul developed a list of factors

that they suggest should be included in all reports of annotation efforts. These are:

1. Number of annotators;

2. Type and amount of material annotated;

3. Number of categories in the scheme;

4. Criteria for selecting annotators;

5. Annotator’s expert status (novices, domain experts, schema developers, native

speakers, etc.);
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6. Type and intensity of training;

7. Type and computation of the agreement index;

8. Purpose for calculating the agreement index (including whether the goal was to

reach a certain threshold or achieve “highest-possible” agreement).

The very fact that these fairly basic pieces of information are not always included

in reports on annotation tasks shows that there are no established or adhered to stan-

dards for reporting on annotation tasks, either in papers or guidelines. However, these

two papers provide excellent suggestions for what information should be included in

reporting about an annotation task, and how it should be presented.

In terms of light annotations tasks, while it is clearly important to report on

the knowledge and training of annotators, particularly for domain expert tasks, it is

an equally pressing issue that the annotations guidelines fully show the annotators

what their task is. In keeping with the idea of a light annotation task, the guidelines

should be equally ‘light’—that is not to suggest that they should not fully explain

the annotation the experts are being asked to create, but rather that they should not

contain extraneous information that could slow down the annotation of the corpus.

2.5 Annotation Tools

Any annotation task that is being undertaken by human annotators must have accom-

panying software that allows for the selected corpus to be marked up with the chosen

annotation scheme. However, opinions differ on whether annotation tools should be

specialized—providing support for only one type of annotation task in order to speed
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up the annotation process—or generalized—providing support for a diverse set of an-

notation tasks so that annotators and researchers can learn to use a single piece of

software and not require repeated training sessions.

Dipper et al. (2004b) developed a list of requirements for annotation tools based

on their analysis of a set of 12 research projects from a variety of disciplines. Their

requirements (paraphrased) are:

� Diversity of data: Support of different modalities (written or spoken), differ-

ent character sets, and annotation units (sentence, discourse, etc.);

� Multi-level annotation: Support of different levels of annotation, such as

syntactic, morphological, etc.;

� Diversity of annotation: Support for pairs of relations (directed and non-

directed), and cross-level relation annotation;

� Simplicity: Tools must be simple to use and create tasks for; time learning

how to use the tool should be minimal;

� Customizability: Support for creation of new tagsets; tags and attributes can

be easily modified;

� Quality assurance: Support for making annotations consistent and complete,

as well as compliance with encoding standards;

� Convertibility: Support of converting data from one format to another, by

either providing standardized output, or providing built-in conversion tools.

Here, Dipper et al. are supporting the idea of general-purpose tools: their list of

requirements promote tools that can be used for many different types of tasks, though
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they acknowledge that “individual requirements might be of different relevance to

different annotation projects” (ibid.).

On the other hand, Reidsma et al. (2005), who performed a meta-analysis of

papers critiquing annotation tools (including that of Dipper et al. (2004b)), reach the

conclusion that “...to meet the annotation requirements for very large corpora, it may

be necessary to develop annotation tools that are specialized to reduce the time and

effort for creating the annotations.” Somewhere between these two views, Dybkjaer

and Bernsen (2004), in their evaluation of multi-modal annotation tools reach the

conclusion that “Comparing ... tools is clearly a multi-dimensional exercise. No tools

is just simply better or poorer than another”, but still advocate for the creation of a

general-purpose multi-modal annotation tool.

In some ways, however, the debate over whether tools should be specialized or

generalized is moot: a variety of annotations tools of all types exist, from the very

general-purpose GATE (Cunningham et al., 2010) to task-specific tools such as SAPI-

ENT (Liakata et al., 2009), a web browser plug-in specifically for creating sentence-

level annotations. The range between those two extremes is not small: a search of

the LRE Resource Map2 for “annotation tools” returns over 200 results. While there

are many instances of repetition in those results (the Map is not currently curated),

there is clearly a variety of annotation tools available.

Of all the desiderata discussed in this chapter, the annotation tool is the one that

will have the most direct impact on a domain expert annotator, particularly when an

annotation task has a limited amount of time or money. In that case, it is best for

the tool to be easy to use and appropriate for the annotation task. This aspect of

domain-expert annotations will be discussed further in Chapter 5.

2http://www.languagelibrary.eu/lremap/
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2.6 Annotation Process

As Section 1.4.1 illustrates, books on corpus linguistics do not provide discussions of

the process required to create an annotated corpus. It was not until recently that

this topic has been examined, beginning with Pustejovsky’s description annotation

methodology in 2006 (Pustejovsky, 2006).

Palmer and Xue (2010) also addressed the issue of linguistic annotation, and

they noted that the “development of an annotation scheme requires addressing at a

minimum the following issues [...]:

� target phenomena definition;

� corpus selection;

� annotation efficiency and consistency;

� annotation infrastructure;

� Annotation evaluation;

� Use of machine learning for pre-processing and sampling.”

The authors go on to provides details for aspects of each item that need to be

addressed when defining an annotation scheme, such as deciding whether the annota-

tion can be done automatically, or if the task can be narrowed down to a smaller set

of tags; whether the corpus that is chosen should be full articles or could be isolated

sentences; how the annotation guidelines can be defined and the need for testing the

annotations before finalizing the scheme; how the tool chosen will affect the annota-

tion process, through data management and/or ease of use; the appropriate way of

34



CHAPTER 2. DESIDERATA OF ANNOTATION TASKS

finding inter-tagger agreement scores for the task; and what types of pre-processing

can be used in conjunction with the annotated corpus.

In terms of a light annotation, the process used has less of an impact on the

annotators, and more on the researchers organizing the annotation and its uses. The

items and discussion provided by Palmer and Xue provide an excellent way of viewing

the annotation process, and some similarities exist between these items and the stages

of the MATTER cycle—however, the work described later in this dissertation was

done within the paradigm of the MATTER cycle, and so a fuller description of that

system is given in Chapter 3.
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The MATTER Cycle

The MATTER cycle provides the first general methodology for an annotation and

machine learning task. It was conceptualized by Pustejovsky in 2006 as the Anno-

tate, Train, Test model for annotation (Pustejovsky, 2006), and has recently been

expanded upon in the book Natural Language Annotation for Machine Learning by

James Pustejovsky and Amber Stubbs (forthcoming 2012). This chapter provides an

overview of the MATTER cycle as it is presented in Natural Language Annotation

for Machine Learning.

This material is presented here in order to provide a platform from which the

methodology of light annotations tasks can be discussed. The end of the chapter

describes the relationship between the full MATTER cycle as it is used for natural

language processing and machine learning and the principles of light annotation tasks.
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3.1 Overview of MATTER

MATTER stands for Model, Annotate, Test, Train, Evaluate, Revise. Figure 3.1

provides a visualization of the cycle. These steps describe a general methodology for

creating annotation and machine learning tasks of all different types, from part-of-

speech tagging to detailed semantic or discourse analysis.

Figure 3.1: The MATTER cycle.

The rest of this section describes the MATTER cycle in more detail.

3.1.1 Goal, corpus and annotators

Prior to the beginning of the MATTER cycle, it is important to define the goal of the

annotation task, and determine the source and method for collecting an appropriately

balanced and representative corpus. Naturally, as the MATTER cycle progresses it

is possible that the goal (and therefore the metrics by which it is determined if the

corpus is sufficiently balanced/representative) may change, but establishing these two

aspects of an annotation task early in the process helps keep the project on track.

While it is not a requirement that specific annotators be chosen this early in the

cycle, it is recommended that the researcher have an idea of what sort of background
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and experience the annotators will have, as this information can affect the model

chosen and how the guidelines are written.

3.1.2 M - Model

The Model of an annotation task is the specification or schema that describes what

the annotation will be—the tags, attributes, and other features that will be added to

the corpus being annotated. The Model can be described as M = 〈T,R, I〉, where

M is the model, T is the set of terms being used, R is the relations between those

terms, and I is the interpretation of the terms and relations (Pustejovsky and Stubbs,

forthcoming 2012).

Generally speaking, only a single model is used during an annotation task, and

that model represents both the information that is going to be collected from the

corpus during the course of the annotation, and the information that will be recreated

later using machine learning or other NLP systems.

3.1.3 A - Annotate

The Annotate step in the MATTER cycle actually represents a number of different

steps, from writing the annotation guidelines, finding annotators, selecting annotation

software, and testing the Model on the corpus through practice annotations. In fact,

it is useful to envision the Model and Annotation phases of MATTER as a smaller

cycle—the MAMA (Model-Annotate-Model-Annotate) cycle, or the “babbling” phase

of the annotation development process (see Figure 3.2). This is the part of the process

where the problems with the model and annotation system are worked out, and the

final versions of both are determined so the full annotation task can be completed.

38



CHAPTER 3. THE MATTER CYCLE

Figure 3.2: The Model-Annotate Cycle

Once the MAMA cycle is complete—when there are no more changes being made

to the specifications or guidelines, and they have been applied to the entire corpus—

and there is an annotated and adjudicated Gold Standard corpus with the complete

Model represented, the machine learning part of the process can begin.

3.1.4 T - Train

Training is the process by which a machine learning (ML) algorithm is taught to look

for and recognize features that will be used for creating the desired output from the

system. Training is only performed on a part of the corpus that has been set aside

for that purpose–generally the corpus is split into three parts: development training

(training, roughly 44% of the full corpus), development testing (dev-test, 22%), and

final testing (testing, 33%) Figure 3.3 shows a graph of the distribution proportions.

The training set is used to supply the chosen algorithm with the features it will use

later on, in the testing phase of the MATTER cycle. The features that it is trained to

look for will generally be annotation-based (reliant on the annotations created during
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Figure 3.3: Corpus divisions for training and testing

the MAMA cycle), or structure-based (reliant on the format of the document), though

other sources of features can also be used (for example, dictionaries or ontologies).

3.1.5 TE - Test and Evaluate

Much like the Model and Annotation stages, the Training, Testing, and Evaluation

stages are also involved in a smaller cycle within MATTER: the Training-Evaluation

cycle (see Figure 3.4).

Figure 3.4: The Training-Evaluation Cycle

Once the algorithm has been trained on the training data, it is run on the dev-

test data, then evaluated for accuracy (usually with precision and recall scores and

F-measures). If the scores are not good, the features are changed, the algorithm

re-trained, and the output evaluated again until a satisfactory level of accuracy is
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reached, at which point the algorithm is run over the test dataset, which is then used

to calculate the accuracy scores that are reported in papers or presentations.

3.1.6 R - Revise

The Revision state of the MATTER cycle is the point at which the entire project, from

corpus selection to ML evaluation results, is reviewed. Topics for revision include:

aspects of the task that may have contributed to poor performance, changes to the

task that could result in improved performance later on, and new applications of the

task that could be done successfully in the future, such as expanding the task to a

new language or domain.

3.2 MATTER and existing standards

Because the MATTER cycle is a general description of the process used for creating

annotated data and training machine learning algorithms, there is no conflict between

it and the existing (or proposed) annotation standards described in Chapter 2. The

MATTER cycle is agnostic to the decisions made regarding corpus selection, annota-

tion tools, representation formats, etc. It does, however, provide a set of guidelines

for the process of creating an annotated corpus and using that corpus for machine

learning techniques, and provides standard reference points for the process as it is

usually performed. As was discussed in Section 1.4, until the MATTER cycle was

developed there was no set methodology for annotation tasks, so this cycle provided a

stable platform for the development of annotation tasks, and therefore provides a way

for light annotation tasks to be added to the toolkit of natural language researchers.
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3.3 MATTER and light annotation tasks

As explained in Section 3.1.3, in a standard iteration of the MATTER cycle, or

specifically the MAMA cycle, the entire Model of the annotation task is applied to

the chosen corpus by the annotators. However, this paradigm can cause problems

when domain expert knowledge is needed for a task. There are many examples

of annotation tasks where it would be impractical to ask a medical professional to

annotate all the aspects of the Model in the corpus due to the time it would take

to add them and the cost of hiring domain experts (doctors, nurses, biologists, etc.)

as consultants or annotators. While complex annotation tasks using domain experts

have certainly be done in the past (Kim et al., 2008; Roberts et al., 2008), such

endeavors are expensive in both time and money.

Therefore, this dissertation proposes, when possible, the creation of a light an-

notation task, which is essentially a linguistically under-specified, task- and domain-

specific Model that overlaps with the full annotation task and is used to quickly

capture expert knowledge in a corpus as it relates to a research question, but does

not require the experts to perform intensive annotation tasks such as part-of-speech

tagging or semantic role labeling. Instead, the domain expert is given an annota-

tion task that can represent the information that they are being asked to discover,

which can then be augmented later with the rest of the Model by other annotators.

This light annotation can then be augmented with other annotation layers, created

by other annotators or automatically generated with software. While the concept of

layered and light annotations is not new, prior to this dissertation there did not exist

an analysis of existing light annotations, or what is an effective way to encode domain

expert knowledge in an annotation task.
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The next chapter discusses existing light annotation tasks and other strategies for

annotations in the bioclinical domain, and presents principles for the creation of light

annotations that are compatible with the standards described in Chapter 2 and the

methodology of the MATTER cycle.
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Representing Expert Knowledge

As discussed in Section 1.4.4, while a number of biomedical and clinical corpora and

corpus annotations exist, there is no standardized methodology for capturing domain

expert knowledge in an annotation task. Traditionally, the basic structure of the

MATTER cycle has been used for developing corpora using domain expert annota-

tors, but this practice has recently come under criticism by some of the researchers

attempting to create these annotated resources due to the difficulty in asking do-

main experts to perform full semantic or syntactic annotations. Papers exploring the

difficulties of domain expert annotations have recently been published, and the case

study presented in Part II of this dissertation provides an in-depth look at some of

the problems domain-specific tasks can present.

Xia and Yetisgen-Yildiz (2012) recount their own experiences in managing three

different clinical annotation tasks requiring domain expert knowledge (identifying

critical recommendations in radiology reports, diagnosing disease from chest x-ray

reports, and diagnosing pneumonia from ICU reports), and identify several areas

of the annotation process where the addition of domain experts causes additional

44



CHAPTER 4. REPRESENTING EXPERT KNOWLEDGE

challenges to the annotation task. In addition to the usual troubles that plague any

clinical annotation task (obtaining Internal Review Board (IRB) approval, the legal

problems surrounding trying to release a corpus of clinical notes, and the expense of

hiring domain experts as annotators), they note that for domain expert annotation

tasks, much of the work in the traditional annotation cycle falls on the shoulders

of the domain experts, because the NLP researchers are not necessarily qualified

to perform tasks such as writing guidelines and finding annotators in the clinical

domain. However, because domain experts are not likely to be familiar with standard

practices for writing annotation guidelines and training annotators, the annotation

process is affected by lack of agreement between annotators (which, they note, is

sometimes caused by different medical backgrounds as well—something that is critical

to a radiologist may not be read the same way by a general practitioner). Additionally,

many domain experts do not realize how much time and effort must go in to creating

a gold standard corpus, which can become problematic when the project takes longer

than anticipated.

Similarly, Scott et al. (2012) also observe that it can be difficult to find qualified

domain experts who are willing to spend the time required to create an annotated

corpus, and further discuss the general problem of annotation tasks not generally

being viewed as scientific tasks, leading to a dearth of wholly accepted standards for

creating and evaluating annotated corpora.

The problems outlined above need to be addressed in order to create quality bio-

clinical annotations. Existing approaches to these problems (including those proposed

by Xia and Yetisgen-Yildiz and Scott et al.) will be discussed in Section 4.1, and a

novel set of guidelines for creating light annotation tasks in the biomedical domain1

1These guidelines (and some of the themes of this chapter) were first presented in Stubbs (2012).
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are presented in Section 4.3.

4.1 Approaches to Bioclinical Annotation

A variety of different tactics have been used in order to create annotated corpora in

the bioclinical domains. Some of these focus solely on the annotation of the corpus,

while others take a more holistic view and attempt to re-frame the entire corpus-

creation process. This section provides an overview of some of the different ways

bioclinical annotation has been approached. It should be noted that some of these

processes (and others not discussed here) have been attempted for other, non-domain

expert annotation tasks, but these are not germane to the problem at hand and are

therefore not discussed further.

The approaches discussed here can be divided into three general types: changes to

the annotators and specifications; changes to the annotation system; and alterations

in the entire annotation task structure.

4.1.1 Annotators and Annotation Specifications

One problem with annotation tasks for clinical documents is that it can be difficult

for researchers of differing backgrounds (for example, linguists and physicians) to see

eye to eye on what should be included in the specification for a clinical annotation

task. In order to create an annotation specification for a task focused on annotating

clinical conditions, Chapman and Dowling (2006) worked together in an iterative

process (essentially, using the MAMA cycle) to create a specification for the task

that both authors/annotators (one a bioinformaticist with a background in linguistics,

the other a physician) could apply to emergency department reports to obtain high
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inter-annotator agreement scores. The experiment was successful, and the f-measure

for annotations over 20 documents was 93% using a schema with 45 variables and 10

exceptions (an exception was a place in the text where it would seem that a particular

tag applied, but the guidelines specifically stated that it should not be—for example,

the ‘thorazine’ in “allergic to thorazine” would not be annotated as a medication, but

the whole phrase would be annotated as a clinical condition).

In later research, the specification (referred to as the ‘Annotation Schema’) de-

veloped by Chapman and Dowling was expanded and used in an experiment to see if

physicians agreed more often when performing the annotation task, or if laypeople (in

this case, bioinformatics masters students) would be able to perform the annotation

equally well (Chapman et al., 2008).

The experiment was again iterative, with the annotators first being trained for

one hour on a Baseline Schema that listed only the medical concepts that were to

be annotated, and the annotators were asked to annotate a set of seven documents.

Later, each annotator was trained for an hour on the Annotation Schema (a version

of the specification from Chapman and Dowling (2006) which was expanded to con-

tain 57 variables divided into three medical concepts) and asked to annotate three

documents, after which detailed feedback was provided for each of the annotations.

This annotate-feedback process was repeated twice more. Finally, after three months

of performing no further annotations, the annotators were asked to annotate a set of

seven reports, with no additional training or feedback.

Unsurprisingly, annotation accuracy and inter-annotator agreement rose quickly

once the annotation-feedback cycle began, even with the more complicated annotation

specification. Somewhat more surprisingly, the lay annotators performed nearly as

well at the Annotation Schema task as the physicians, although the scores were not
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quite as high for the laypeople, and they forgot more of the specification during the

three-month break (Chapman et al., 2008).

This research does not necessarily indicate that someone with no medical training

will be able to perform complex diagnoses over medical records. The specification did

not require that the annotators be able to understand a patient’s condition, merely

that they be able to recognize a phrase as a clinical condition, test result, or other

high-level concept. Were the annotation task to diagnose whether a patient had, or

was at risk for, a particular disease, asking a person with no medical background to

make that determination based a medical record would be a poor use of that person’s

time and the researcher’s resources (and would, presumably, not present a positive

outcome for any patients relying on the research).

However, this idea of using laypeople for annotation tasks is one that has been

researched in other areas of study, not just the bioclinical domain. Another way that

some researchers have been looking to make the process of domain-specific annotations

cheaper and faster is by crowdsourcing—that is, rather than asking two or three people

to provide hundreds of annotation; using the Internet to ask hundreds of people to

do a few annotations each. The most commonly used platform for crowdsourcing

at the moment is Amazon Mechanical Turk2(AMT), a website where people can

create Human Intelligence Tasks (HITs), which are then performed by non-expert

annotators (both in the sense that the annotators are not domain experts, nor are they

linguistic experts ) all over the world. Crowdsourcing has been used fairly effectively

for some types of linguistic annotation tasks such as event recognition, word sense

disambiguation, word similarity and textual entailment (Snow et al., 2008) and not

only in the bioclinical domain. However, it has also been criticized for producing

2https://www.mturk.com/mturk/welcome
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poor quality annotations for other types of tasks, and there is some concern that

the HIT paradigm is exploitative (Fort et al., 2011). Due to the limitations placed

on sharing even de-identified medical data, it is difficult to obtain permission to

use AMT and other crowdsourcing sites as annotation resources for clinical corpora.

Additionally, the lack of guaranteed expert knowledge makes bioclinical annotations

through generic crowdsourcing particularly difficult, though work being done to use

expert crowds is discussed in Section 4.1.3.

4.1.2 Annotation Approaches

Given that one of the problems with creating an annotated bioclinical corpus is that

domain experts are not always familiar with what it means to annotate a document

according to a specification and set of guidelines, one logical approach to making the

process easier is to modify the way that the annotation is created. While medical

professionals are familiar with chart reviews and evaluating those on a set of criteria,

the processes for text annotation used in computational linguistics is not always

familiar territory for domain experts.

One modification to the system of annotation was used during the addition of event

markups to the GENIA corpus, where events in text were annotated and mapped

to an event ontology by domain experts (Kim et al., 2008). However, due to the

complexity of the task, the researchers developed two policies for the annotation

process in order to create more accurate annotations: Text-bound Annotation and

Single-facet Annotation.

The concept behind Text-bound Annotation is relatively simple: “Associate all

annotation with actual expression in text” (ibid.). Essentially, this means that anno-
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tators should not infer the existence of information in the text; rather, they should

only annotate the information that can be verified through assertions in the data.

The practice of requiring annotators to mark only what is explicit in the text is one

that appears fairly regularly, particularly in domain-specific annotations.

Another annotation concept that was used during the GENIA event annotation is

that of Single-facet Annotation, described as: “Keep the view point for annotation as

simple and focused as possible” (ibid.). For the purposes of the GENIA annotation,

this means that the annotators were asked to read the texts while focused solely on

identifying events in the text and connecting them to the ontology: the researchers

describe this as ‘defining one aspect of the text as the focus of annotation” (ibid).

While the GENIA annotation task had only one focus (event annotation), the

concept of Single-facet Annotation is one that can be applied to annotations that

use multiple tags as well: instead of giving an annotator the entire specification and

guidelines for all of the tags at once, the annotation can be split into different tasks

based on each tag, and the annotators can focus on each facet of the annotation one

at a time. This approach can reduce errors in an annotation task by lowering the

cognitive load on the annotators at any given stage of the process. A similar approach

to annotation is used in the Brandeis Annotation Tool (BAT), which splits annotation

tasks into layers that are annotated one at a time (Verhagen, 2010), an approach that

was very effective during the TempEval-2 annotation task (Verhagen et al., 2010) as

well as for word sense disambiguation in the bioclinical domain (Savova et al., 2008).

Another approach to the process of annotation that has been used in the bioclinical

domain is that of “accelerated annotation”, which is based on the active learning

framework of training machine learning algorithms, and was created to speed up the

annotation process for sparse corpora (Tsuruoka et al., 2008). Active learning is
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a system for training statistical classifiers that is based on the idea that “machine

learning algorithm can achieve greater accuracy with fewer training labels if it is

allowed to choose the data from which it learns” (Settles, 2010), and has been used

for other tasks in the bioclinical domain, such as coreference resolution (Miller et al.,

2012). Essentially, this means that the system queries a human annotator about a

piece of data that it selects for itself3, the human’s annotation is added to the pool

of data, the classifier is retrained and a new query is selected based on the improved

model. Generally speaking, the full annotation specification is not presented to the

human annotator, only the parts that the system needs information about.

The “accelerated annotation” process described in Tsuruoka et al. (2008) is based

on the active learning approach, but differs slightly in goal. While active learning

seeks to train a classifier by annotating only a subset of the given corpus, the goal

of Tsuruoka et al. was to create a complete corpus of annotated named entities that

could be used by other researchers (ibid). The primary difference in the accelerated

annotation system from active learning methods is that the accelerated annotation

framework sought to train the classifier only to detect what section of the text was

most likely to have an entity that needed to be annotated; the framework did not

attempt to automate the actual annotation process, which is the purpose of most

active learning systems.

Each sentence that was identified as being of interest was then sent to a human

annotator to be marked up. This system therefore allows domain expert annotators

to add their knowledge to the corpus much more rapidly than if they had to read

the entire dataset themselves. The authors note, however, that this method for

3There are a variety of ways that this piece of data is chosen; for an overview of all the different
methods, see Settles (2010).
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speeding up annotation is best used in a corpus where the objects being annotated

are sparse, but they find that the system allowed the number of sentences that had

to be annotated reduced by almost half (ibid).

4.1.3 Annotation Cycles

Finally, some researchers have chosen to consider the entire MAMA cycle, and have

looked at ways to improve that process for the clinical domain. While the cycle itself

remains unchanged, better ways to incorporate the knowledge of NLP researchers and

domain experts have been suggested.

Xia and Yetisgen-Yildiz (2012), based on their own experiences and problems

with domain-specific annotations (discussed at the beginning of this chapter), made

the following suggestions for improving the annotation experience for domain experts

(paraphrased):

� Have the annotators work together to create the annotation guidelines and

review each other’s work as part of the training. Doing so significantly increased

annotator agreement scores.

� Have annotators provide additional information in their annotations—instead

of simply having them apply a label to the text (such as whether or not the

person described has a particular disease), have the annotators indicate what

parts of the text led to their conclusion.

� Be sure that the domain experts (in this case, physicians) are aware of how

much time it can take to create a gold standard annotated corpus and that

they are able to make the appropriate time commitment.
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� Have the NLP researchers involved early in the creation of the annotation corpus

and task, as they will be more familiar with the annotation process and common

pitfalls.

Although they are not explicitly stated, there are similarities between these sug-

gestions and some of the other techniques that have been used for bioclinical anno-

tations. The suggestion of having annotators work together to create the guidelines

is similar to the technique used to create the specification in Chapman and Down-

ing (2006), as well as the technique used to train the annotators in Chapman et al.

(2008). Additionally, the suggestion to have the annotators indicate the place in the

text that they are basing their judgments on does help locate features for machine

learning algorithms, as Xia and Yetisgen-Yildiz (2012) suggest, but it also means that

the annotations are more likely to be based on what is in the text rather than what

can be inferred, which echoes back to the Text-bound Annotation technique from

Kim et al. (2008).

On the other hand, Scott et al. (2012) focus on amending the annotation process

to be closer to the research techniques used in psycholinguistics and experimental

psychology for collecting judgments from annotators in order to make the annotation

process more scientific and repeatable.

Specifically, Scott et al. use their own annotation task—determining the certainty

that a patient has a particular condition by interpreting the hedge statements used to

preface the diagnosis (i.e., “may have”, “probably does not have”, etc.)—in clinical

texts as a basis for this scientific approach to annotation. Rather than simply find

some annotators and ask them to mark and label hedge statements in the texts,

they set up a system where the annotators were presented with individual statements
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containing hedges and given a scale from 0% to 100% to mark the certainty level

of the statement being made. Each annotator was forced to provide a judgment for

each sentence, and the system contained redundant sentences in order to control for

participants who contradicted themselves.

The annotations were collected through the website SurveyMonkey4, and anno-

tators were recruited through “professional newsgroups in medicine and biomedicine

and to colleagues in medical schools”. The annotation effort was quite successful,

with low standard deviations in hedge assessments for native speakers of American

and British English.

Here, Scott et al. (2012) provide a way to crowdsource domain-expert annotations,

as an alternative to crowdsourcing with Amazon’s Mechanical Turk system, which

cannot guarantee domain expertise in the annotators. However, it should be noted

that it is difficult to break down every type of annotation task into one that will be

effective in a crowdsourcing system, and any task requiring a medical diagnosis may

not be a good candidate for this type of annotation.

4.1.4 Overview of Bioclinical Annotations

Overall, the techniques for modifying tasks for the bioclinical domain that were re-

viewed here are all effective for the tasks they were targeted to handle. Unfortunately,

none of them fully address the problems faced by NLP researchers who do not have

easy access to domain expert trained annotators, but rather have to hire such experts

as consultants for annotation tasks. In order to maximize the use of the resulting

annotation but still minimize the time that the annotation takes to create, the an-

4http://www.surveymonkey.com/
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notation task must require a relatively low cognitive load on the annotator, but still

be comprehensive enough that the information can be used later in NLP tasks. To

that end, light annotation tasks are an ideal solution to the problems presented by

annotations requiring domain expert knowledge.

4.2 Defining Light Annotation Tasks

Clearly, many of the approaches to annotation tasks outlined in Section 4.1 have

been effective, but none of them fully address all the problems associated with do-

main expert annotations, particularly those of the time and money required to create

annotated corpora. To address this problem, this dissertation proposes the use of

light annotation tasks, a framework for annotation that is based on the MATTER

cycle and is compatible with the established standards and desiderata of annotation

projects (as described in Chapter 2). The purpose of a light annotation task is to

create a dataset that represents complex information, but that is itself not complex

(Stubbs, 2012).

A light annotation is an annotation task that uses linguistically underspecified,

task-specific tags, i.e., tags that do not supply full syntactic or semantic content, but

instead can be used to indicate more broadly the areas of interest in a document

without being anchored to strict linguistic concepts. Here, “underspecified” does not

mean that the tags are not specific to the task– indeed, their very specificity to,

for example, a clinical question can be what keeps them from being clearly defined

semantically, as will be shown in Part II of this dissertation. An example of a light

annotation task can include top-level document classification tasks, where a single

label is applied to an entire document.
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In an annotation task, the Model for the task (as described in Section 3.1.2) can

be described as M = 〈T,R, I〉, where M is the model, T is the set of terms being

used, R is the relations between those terms, and I is the interpretation of the terms

and relations. Traditionally in annotation tasks, a single Model is used to represent

all of the tags and attributes that will be used to annotate a document. However,

this approach is problematic when it comes to domain expert bioclinical annotations,

because in many cases it would be impractical for NLP researchers to hire consultants

to perform a full syntactic and/or semantic annotation for all of the information in a

document that may be required to build an NLP system.

For example, if a researcher was interested in building an NLP system to determine

whether a patient was diagnosed with a condition (such as asthma) based on their

hospital discharge summary, there are a large number of aspects of the document

that need to be accounted for in the system’s feature set in order to accurately

make a diagnosis. Some of these features include the section of the document (if

asthma is mentioned in the ‘Family History’ section, it is much less likely to be

related to the patient; more information about the structure of EHRs can be found in

6.3.3), whether there are hedge phrases or negations surrounding the key phrases, any

possible coreferences that could be resolved to give a positive or negative diagnosis,

and so on. In addition to these issues, NLP systems often use sentence markers, part-

of-speech tags, syntactic chunks, and other linguistic features to help train statistical

systems, and to write rules for rule-based systems.

It would clearly be a waste of time and money to ask that two or more domain

experts annotate all of that information so that it can be incorporated into an auto-

mated system. Aside from the fact that a bioclinical domain expert is probably not

familiar with syntactic theory, there is simply too much information that needs to
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be annotated. However, the overall goal of the research effort can be described in a

single question: Does this patient have asthma?, which is certainly a question that a

pair of clinicians could answer. The simple classification task created by that question

could even be augmented by asking What parts of this text provide that information?

without disproportionately adding to the annotator’s cognitive load: since they would

have to be reading the document anyway to make that determination, it would not

be hard to have them mark the relevant passages.

Still, any additional information asked outside of the classification should not

require linking to semantic classes, disambiguating word senses, or any other anno-

tation task that is too grounded in linguistic theory. The domain experts should not

be asked to create the full Model, M , that will be used for any future NLP systems,

but should rather be asked to annotate with M1, a complementary light annotation

model that contains task-specific tags.

It should be noted that M1 is not necessarily a subset of M , just as 〈T1, R1, I1〉 are

not necessarily subsets of 〈T,R, I〉. Indeed, the relationship between M1 and M will

depend greatly on the specific annotation task being attempted; and the relationship

between the two could instead be that of supersets (should M1 use umbrella terms for

the concepts in M), or some other, less standardized relationship. The interpretation

(I1) of the tags in M1 will generally also semantically underspecified. Figure 4.1 shows

a sample relationship between M and M1, where the tags in M1 are broader in scope

than those in M .

In effect, M1 provides a model for the task-specific question being asked, such as

whether a patient has a particular condition based on their records, or whether a

certain type of reaction is discussed in a biology paper. On the other hand, M is the

model that will be used in the NLP system that will ultimately attempt to emulate
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Figure 4.1: A representation of a possible relationship between a light annotation
model, M1, and a full annotation model, M

the results of the M1 annotation. The exact relationship between these two models

will depend on the the specific task being attempted, and what aspects of the text

M1 reveals to be most relevant for training the NLP system.

While the above description of the relationship between a light annotation task

and a traditional annotation model is new, light annotation tasks are already being

used in the bioclinical domain. However, there is currently no set of guidelines for

how to create effective light annotation tasks. Section 4.2.1 provides examples of how

light annotations have been used already for clinical tasks, and Section 4.3 presents

a novel set of guidelines for creating light annotation tasks.

4.2.1 Light annotations in the bioclinical domain

Many annotation studies in the biomedical and clinical domains cite the time and

money required to create full semantic or syntactic annotations of clinical texts as

barriers to good corpus creation, and many have sought ways to find the needed
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information without going over budget or running out of time (though they do not

refer to their chosen process as being a light annotation). Using a light annotation

specification is done mostly when the information needed about a document is a

domain-specific question (rather than a purely linguistic inquiry) and requires do-

main expert knowledge to answer. For example, having a doctor, research nurse or

medical coder indicate whether a document suggests that the patient described has

a particular diagnosis is a good candidate for a light annotation task, and the an-

notation could still be light if the annotators were asked to tag the portions of the

document that pertained to their diagnosis. However, asking the domain experts to

provide deep linguistic annotations, such as semantic classes or part of speech tags,

would take the task out of the realm of domain-specific light annotations and into

that of more traditional linguistic annotation.

South et al. (2009) looked at identifying patients with IBD (Inflammatory Bowel

Disease), and asked their annotators (two clinicians) to annotate the textual extents

in a corpus of clinical notes that were related to the IBD concepts and to indicate

the semantic class and attributes of those extents.

While South et al.’s full annotation task is not one that would be considered ‘light’

by the definition given here, aspects of the analysis were reflective of light annotation

tasks and their applications. The researchers examined agreement at the document,

concept, and attribute levels and found that agreement over which documents con-

tained IBD-related information (93%), agreement for concept annotation was lower

(.72 on average across all the concepts), and attribute agreement varied widely (.06

to .67). Unfortunately, an analysis of whether the disagreement at the concept level

was over tag placement or semantic class was not provided. That is, if the annotators

agreed that an instance of “ulcerative colitis” was annotated by both annotators, but
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labeled a “sign or symptom” by one and a “diagnosis” by the other, that is a very

different kind of disagreement than if the phrase was annotated by one but not anno-

tated at all by the other. However, even without that information about the concept

level annotation, it is clear that the higher-level the annotation (whether the docu-

ment contains indications of IBD) the more accurate the annotation was compared

to the levels of annotation requiring assignment of a semantic class or other, more

detailed attributes.

There are a number of studies that use annotation models that can be considered

“light”, but for the sake of brevity this dissertation will focus on a few representative

studies. One example of a study designed to use a light annotation task is Yetisgen-

Yildiz et al. (2011), which sought to identify patients who could be identified as

having pneumonia. The researchers asked that an annotator “[...] with 6 years of

experience as a research study nurse manually [classify] a patient as ‘positive’ if the

patient had pneumonia within the first 48 hours of ICU admission and as ‘negative’

if the patient did not have pneumonia or the pneumonia was detected after the first

48 hours of ICU admission[...]”.

Simply using “positive” and “negative” as document-level labels made the task

relatively easy for the annotator to perform, and his or her time could then be spent

focusing on reading the document to determine the diagnosis, though the use of

only one annotator is unusual for an annotation task. However, the researchers were

able to use these single labels to create an NLP system that was able to replicate

those diagnoses with 58.3% precision and 42.4% recall, which are impressive figures

considering the complexity of the question asked about the patients, which required

both analysis of physical state as well as temporal analysis of the document. This

indicates that light annotation tasks can be useful starting places for NLP in the
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bioclinical domain; in fact, the ARC5 (Automated Retrieval Console) system for

identifying patients with diseases is built around the idea that users will indicate

areas of the text that are of interest, rather than perform deep annotations of the

text (D’Avolio et al., 2010; D’Avolio et al., 2011).

Finally, the 2007 i2b2 (Informatics for Integrating Biology and the Bedside) NLP

challenge task was that of identifying the smoking status of a patient from his or her

medical discharge records (Uzuner et al., 2007). The participants in the challenge

were provided with an annotated dataset, and attempted to recreate the labels given

to the documents in the training and testing datasets. The annotation scheme used

was again a single label classification task using the following labels:

� past smoker : someone who quit smoking a year or more ago;

� current smoker : someone who smoked within the past year;

� smoker : someone who was either a current or past smoker, but it could not be

determined when or if they had quit;

� non-smoker : someone who never smoked;

� unknown: someone whose record contained no information about smoking sta-

tus.

The definition of “smoker” used here may be unintuitive to someone who is not

a clinician, but it is founded on medical practices: because the effects of smoking

linger even after has someone quit for a short amount of time, a person isn’t generally

grouped as a ‘past smoker’ until they have not smoked for a sufficient length of time.

5http://arc.4thparadigm.org/
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The annotation for the i2b2 smoking status dataset was performed by two pul-

monologists, and was in fact performed twice: first, the annotators were asked to use

their intuition when creating labels for each document, and second they were asked

to label the documents based only on what was stated in the text. Unsurprisingly,

the intuition-based annotations obtained significantly lower agreement scores (aver-

age Cohen’s kappa of .45) compared to the text-based annotations (average Cohen’s

kappa of .84).

Given this dataset for training and a second for testing, challenge participants

were able to build systems that performed well, and 12 system runs were able to

obtain F-scores of over .84 (Uzuner et al., 2007). Despite the lack of semantic and

syntactic information in the annotated corpus, some of the top-performing systems

were able to augment the data with that information themselves (Clark et al., 2008;

Cohen, 2008; Szarvas et al., 2006).

While there are certainly other ‘light’ bioclinical annotations that have been per-

formed (for example, the BioNLP workshop tasks have also benefited from simplifying

annotation tasks used for other purposes (Kim et al., 2009; Kim et al., 2011)), the

ones discussed here are sufficiently representative of the state of light annotation tasks

in the bioclinical domain for the purposes of discussion in this dissertation.

It is clear that light annotation tasks are relevant and useful for the biomedical

domain in general and NLP research specifically, but until now there has been no

methodology for creating annotation tasks for domain experts. The next section

explores generalizations about the annotation tasks discussed in this and previous

sections, and presents a set of principles that can be applied to the creation of light

annotation tasks.
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4.3 Principles of Light Annotation Tasks

Just as how, until recently, there was no established methodology for creating and

performing annotation and machine learning tasks (c.f. Chapter 3), despite corpus

annotations being a staple of corpus linguistics and computational linguistics research

for decades, there are no established standards for designing light annotation tasks for

the purpose of capturing domain-expert knowledge, despite the fact that such tasks

have been used in biomedical and clinical domains for years.

Because the majority of existing related research has been done in the bioclinical

domain, and the case study presented at the end of this dissertation uses clinical data,

the discussion of light annotations tasks for this dissertation have been primarily in

the bioclinical domain. However, it should be noted that light annotation tasks could

be used for any type of annotation requiring the capturing of professional knowledge

(legal texts, for example, would be excellent candidates for light annotation tasks).

It should be noted that complex linguistic annotations are not considered part of

the “professional” annotations being discussed in this dissertation. While significant

study is often necessary to perform detailed linguistic-based annotations, the MAT-

TER cycle is generally sufficient for capturing that type of professional knowledge.

This dissertation seeks to find a reliable way to encode professional knowledge of fields

where textual annotation is not already standard practice.

Based on the examples presented in the previous section, as well as the other ap-

proaches to bioclinical annotations discussed in Section 4.1, and the lessons learned

from the case study presented in Part II, this dissertation presents a novel set of guide-

lines aimed at designing effective ways for leveraging expert knowledge in domain-

specific annotation tasks; these guidelines are also compatible with the general desider-
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ata for annotation tasks described in Chapter 2, as well as the methodology described

in the MATTER cycle (Chapter 3).

By synthesizing all of the above standards, projects, and desiderata, maxims for

creating good light annotation tasks can be established. The following principles are

therefore proposed6:

� The annotations are performed by experts in the field;

� The task is divided into as few classification questions as possible;

� The classifications used in the model are based on current best theories and

practices for the chosen domain;

� Annotation should be done based only on what is in the text, not on expert’s

intuitions about the text;

� If possible, the annotations should be applied to sentence- or phrase-level sec-

tions of the document, in support of document-level classifications;

� Additional layers of annotation can be provided before or after the light anno-

tation is performed without conflicting with the given classifications.

The following section examines each of these guidelines in turn:

Expert annotators: Put simply, if the purpose of the annotation task is to obtain

complex information about the data, the annotations should be done by people who

are qualified to make those determinations. On the surface this is obvious, but it is

6A preliminary version of these principles and discussion were originally presented in Stubbs
(2012), but have been expanded and revised in this dissertation.
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a departure from more traditional linguistic annotations where linguists and domain

experts have shown roughly equal ability to apply part-of-speech tags, tree structures,

and coreference markers (Tateisi and Tsujii, 2004; Tateisi et al., 2005; Cohen et al.,

2010). Resolving to use expert annotators allows the M1 annotation model to capture

information about the text that only a domain expert would be able to determine,

such as whether a patient has a particular clinical condition, or is at risk for one,

without getting bogged down in deep syntactic or semantic annotations.

Minimal classifications: By breaking down the needed information into a small set

of classification tasks (or even a single task, as is seen in the Smoking Status corpus),

the annotation can be done much more quickly and accurately. This is particularly

helpful for research groups who may not have a domain professional in-house, but

instead need to hire domain expert annotators as consultants: a process that can be

costly and time-consuming. This approach was used, to one extent or another, in all

of the light annotation tasks discussed previously (South et al., 2009; Uzuner et al.,

2007; D’Avolio et al., 2011; Yetisgen-Yildiz et al., 2011), as well as by Wilbur et al.

(2006) in which five aspects of scientific papers that can be used generally in text

mining were identified: focus, polarity, certainty, evidence, and directionality.

Based on current theories, techniques and resources: Beyond simply suggest-

ing that annotations should not be intrinsically unscientific, the point of this principle

is to say that the domain expert’s understanding of the text should take precedence

over strictly linguistic analyses. For the Smoking Status corpus (Uzuner et al., 2007),

for instance, a textual reading of ‘quit smoking 3 months ago’ by a layperson would

indicate a status of ‘Past Smoker’, but that would be incorrect according to the med-
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ical interpretation. The annotation must therefore reflect medical standards, and not

be subordinated to easier or more obvious interpretations.

Additionally, any existing resources that are considered standards in the domain

being examined should also be used as a starting point for any domain-specific light

annotation task. Standard definitions, dictionaries, ontologies, and so on should be

used where possible, in order to ensure that the light annotation is compatible with

existing work in the field. For example, in the biomedical community, the resources

contained in the UMLS7 are repositories for standardized terminology.

Evidence-based annotations: It seems reasonable to suggest that, if supplied with

an expert’s knowledge in a field, making use of the intuitions that go along with that

knowledge would be a great boon to interpreting biomedical texts. However, both the

Smoking Status challenge and the GENIA event annotations found that using expert

intuitions resulted in greater discrepancies in inter-annotator agreement (Uzuner et

al., 2007; Kim et al., 2008). Kim et al. relied instead on what they referred to as

Text-bound annotation: annotations that required the annotators to “indicate clues

in the text for every annotation they made”. This resulted in higher inter-annotator

agreement and more useful annotations. There is a key difference between making

use of expert knowledge and relying on expert intuition. Relying on intuition may

result in annotators trying to read between the lines of a text, or past experience that

tells them, ‘If a patient says this, it’s usually actually that’. Limiting annotations

and classifications to what is said in the text will result in annotations that are both

more agreed upon between annotators and more useful for machine learning or other

NLP techniques.

7http://www.nlm.nih.gov/research/umls/
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Sentence- or phrase-level annotations to support document classifications:

While the simplest possible annotation task is to have domain experts assign a label

to an entire document (for example “positive” if a patient meets the criterion being

examined, “negative” if they do not), if the ultimate purpose of the dataset is for use in

training and testing an NLP system, then it is advisable to have the annotators show

what aspects of the text are leading them to their conclusions. This helps ensure that

the annotations are evidence-based, and also provides suggestions for where an NLP

system should start looking for features, and where the full M annotation model may

be applied. This principle is directly supported by Xia and Yetisgen-Yildiz (2012),

who also suggest that annotators provide additional information for their conclusions.

However, it is important that these supporting annotations not become too dense.

One way to keep an annotation ‘light’ is to not require that the set of terms, T1, be

applied specifically to any particular type of syntactic structure or semantic class,

but rather that it be a general marker that the annotator can use to indicate that a

phrase or sentence contains a relevant piece of information. This allows the task to be

performed much more quickly, but also ensures that the NLP researchers will have a

solid foundation for their own work, when determining where and how to focus their

own efforts.

No conflict with additional annotations: This guideline applies to the practical

matter of the actual encoding of the annotation, and the current standards for corpus

annotation in the computational linguistics community. The annotation task should

not rely on tools or outputs that will not be compatible with other layers of anno-

tation. The easiest way to ensure this is to use tools that are LAF-compliant (c.f.
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Section 2.3, and to represent annotations in stand-off XML or a similar scheme that

does not change the text being annotated. This will make it easier to add layers of

other annotations later in the annotation process for use in machine learning, either

by hand (other annotators) or automatically (with software). This is particularly

important if the existing annotation will be later augmented, either by hand (by lin-

guistics or other non-domain experts) or using automated systems, with other, more

dense, annotations, as was done by many of the groups in the i2b2 smoking status

challenge (Uzuner et al., 2007).

4.4 Methodology of Light Annotation Tasks

Just as the definition of light annotation tasks is based on the Model step of the

MATTER cycle, the method by which a light annotation is applied is based on the

Annotation step of MATTER. More specifically, the MAMA annotation cycle that is

used to apply traditional annotation tasks to corpora is the same one that is used for

creating annotated datasets with a light annotation model.

The primary difference in the annotation process is in intent rather than execu-

tion. While a traditional MAMA cycle in the MATTER cycle aims to encode all the

linguistic annotation necessary to represent the Model, the light annotation Model

and MAMA cycle aim to represent the domain expert knowledge. This will affect

the choice of tags, attributes, software, and annotators, but it does not change the

fundamental methodology of Model, Annotate, Evaluate, Revise. Chapter 7 uses the

case study presented in Part II of this dissertation to demonstrate how a light anno-

tation task is designed and performed for a task requiring professional knowledge, in

this case of the clinical domain.
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Once the light annotation is done, the light Model, M1 can be augmented with

further annotations, also within the MATTER cycle. The specific implementation of

the stages between the light Model, M1 and the complete, MATTER-ready model,

M will vary based on the domain and task being addressed; some examples of this

process could include: incorporating word-sense disambiguations based on existing

domain-specific dictionaries; performing part-of-speech analysis; or adding separate

layers of semantic annotations, such as incorporating temporal or spatial information

as a separate layer of the text.

4.5 Light annotation tasks and identified desider-

ata

Chapter 2 identified the existing and emerging standards and desiderata in the an-

notation community as important considerations for the creation of light annotation

tasks. In this section, those desiderata are revisited, and the relationship between

those standards and the light annotation task principles presented here are discussed.

Corpus creation and selection (Chapter 2.1): The light annotation methodology

does not conflict with the principles of representativeness and balance required for

good results in corpus linguistics, nor does it pose a problem for the mantra “bigger

is better” when it comes to training machine learning algorithms. In fact, the use of

light annotation tasks makes it more likely that a larger domain-specific dataset can

be annotated, since any domain expert annotators that are hired as consultants will

be able to complete more annotations in the same (or even a shorter) period of time.
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General annotation desiderata (Chapter 2.2): Leech’s seven maxims for anno-

tation schemes have been so thoroughly integrated into the de facto standards of

the annotation community that it is almost nonsensical to address them individually

here. Suffice it to say that the light annotation principles do not directly contradict

any of the maxims, and for the most part actively support them.

Annotation representation (Chapter 2.3): As one of the principles of the light

annotation task is that it should not conflict with other annotations, and specifically

mentions the LAF standard for annotation encoding, it is clear that light annotations

are, if the principles are followed, fully compliant with current standards for repre-

senting annotated data.

Annotation guidelines and reporting (Chapter 2.4: The established and emerg-

ing de facto standards for the creation of annotation guidelines and what should be

reported about the annotation process are in some ways entirely separate from the

light annotation process. While it is absolutely important for explaining a light an-

notation task to others that information about the domain experts, their training,

and the model used for the light annotation task be made available, those are all

considerations for after the annotation process is over. In terms of the annotation

guidelines that are provided to the annotators, they should be as clear as possible

for the domain experts to refer to quickly when they are working on creating the

annotated corpus. Again, however, this suggestion is not encoded in the principles or

description of the light annotation task; the execution is left up to the researchers.
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Annotation tools (Chapter 2.5): The environment in which an annotated corpus is

created can have a large impact on the quality of the created corpus. While the prin-

ciples of light annotation tasks do not specify a particular type of annotation software

be used, it does recognize the barriers that unsuitable tools can create, particularly for

domain experts who are unlikely to be familiar with the annotation process. There-

fore, this dissertation presents a set of annotation and adjudication tools designed for

light annotation tasks in Chapter 5.

Annotation process (Chapter 2.6, Chapter 3): The relationship between the light

annotation tasks proposed in this chapter and the MATTER development cycle for

traditional annotation tasks should be quite clear based on the description of light

annotation tasks provided in Chapter 4.2. The light annotation process is intended to

utilize an underspecified annotation model, M1, which can later be transformed into

the fully specified model, M . In terms of the MATTER cycle, it would be entirely

possible to perform the full process with only a light annotation model, but it is likely

that the results from training and testing machine learning algorithms would not be

as good as if M1 had been augmented with other annotations designed to leverage

the professional knowledge captured by the light annotation task.

Overall, the light annotation model and principles provided here do not conflict

with the established standards and desiderata described in Chapter 2. Just as the

MATTER cycle is agnostic to most of the established and emerging standards, so

too is the model and principles of light annotation tasks. This is not a weakness in

the theory behind these tasks, but rather the fact that the light annotation principles

do not conflict with or explicitly support the stated desiderata means that as stan-
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dards change, light annotation tasks can change with them. Even the standard of

representational compatibility, which is described here as being LAF-specific, can be

applied to any representational standards that may emerge in the future. Therefore,

the light annotation methodology does not conflict with existing standards, and is

open to changes in standards that may occur in the future, while still providing a

platform from which domain expert knowledge can be collected.

4.6 Overview of light annotation tasks

The purpose of the light annotation task is not to create a complete representation

of all the relevant data in a domain-specific text. It can, however, create a highly

accurate layer of annotation that will be used in conjunction with other linguistic

information, as was the case with the Smoking Status challenge. In terms of the

MATTER cycle, the light annotation is not the full representation of the Model (M =

〈T,R, I〉). Rather, the light annotation Model, M1, is a top-level set of annotation

that is used to indicate portions of the document relevant to the classification, or

to apply a label to a document as a whole. It does not represent the entire set of

features necessary to create an algorithm (during the Training and Testing phases of

MATTER) that is able to generate the desired classifications.

The methodology for the creation of a light annotation task does, however, fit

neatly into the MAMA cycle of the MATTER process, as it will undergo the same

formative and refining steps that any annotation task, regardless of how dense or light

it is, must go through to be vetted. Indeed, because of the domain expertise required

for many bioclinical tasks, it is imperative that at least one iteration of the MAMA

cycle be observed, so that both the NLP researchers and the domain experts can be
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satisfied with the way that the information is being collected and represented.

Because the light annotation guidelines only make suggestions for the Model of

the annotation task, there will be no conflicts should an NLP/bioclinical researcher

wish to take advantage of some of the other methods used in bioclinical annotations,

such as the Single-facet Annotation used in the GENIA event corpus (Kim et al.,

2008), domain-expert crowdsourcing as described by Scott et al. (2012), or an active

learning-based system such as the accelerated annotation program used by Tsuruoka

et al. (2008).

Naturally, if domain-expert annotators are asked to create a light annotation, it

should be the case that they are provided with an annotation tool that allows them

to label the documents without confusing the task by providing too many options or

requiring a long time to learn to use. A set of tools for annotating and adjudicating

light annotation tasks is presented in the next chapter.
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Chapter 5

Tools for Light Annotations

In addition to the guidelines for light annotation tasks presented in the previous

chapter, this dissertation also provides software for annotating and adjudicating light

annotation tasks1.

As described in Section 2.5, the software is an important part of any annotation

task, and much thought has been put into analyzing what makes a good annotation

tool.

While no outside study has been done on the specific problem of annotation tools

for domain expert annotators or light annotation tasks, Dipper et al. (2004b) ex-

amined what attributes an annotation tool should have for it to be most generally

useful, and created the following list of practical requirements:

� diversity of data;

� multi-level annotation;

� diversity of annotation;

1The basic information in this chapter was first presented in Stubbs (2011), but has been revised
and expanded for this dissertation.
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� simplicity;

� customizibility;

� quality assurance;

� convertibility.

These are all excellent general goals for an annotation task, but as Dipper et al.

discovered in their study, there are often trade-offs between the different criteria. For

example, tools that were more “ready-to-use” (that is, they did not require work to

be done before hand, such as pre-defining annotation specifications) were more user-

friendly, but those applications performed less well in the quality assurance aspect of

the evaluation than tools that took in pre-defined tagsets.

Ultimately, Dipper et al. determine that “...it is clear that the annotation scenario

determines which tools are suitable and which are not” (2004b)). While they do not

explore the scenario of performing light or domain-expert annotation tasks, it is clear

that an appropriate annotation tool may be just as important as an appropriate

annotation model when it comes to best using a domain expert’s time and expertise.

While the specifications of annotation tools for domain-experts and light annota-

tion tasks have not yet been fully studied outside of this dissertation, there are a few

common-sense desiderata for an expert annotation task that can be easily identified.

A tool for domain expert annotation should:

� be easy to install;

� provide a simple way to modify the annotation specification to accommodate

changes to the task;
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� be easy to learn to use;

� clearly display the created annotations and their attributes;

� have all the necessary capabilities for the annotation task.

The last two items on the list will, of course, vary by the annotation task being

performed. The specifics of the annotation task undertaken for this dissertation are

described in Chapter 7, but can be generalized into the following items:

� mark text extents with user-defined tags and attributes;

� annotate partial as well as whole words;

� allow the creation of tags that can be applied to the entire document (non-

consuming extent tags);

� create links between extent tags (including non-consuming extent tags);

� generate LAF-compliant output.

Here, ‘non-consuming extent tag’ means a tag that acts as though it is anchored

to an extent in the text, but can be used to indicate the entire document. While it

would generally be possible in most annotation tools to simply annotate all of the

text of a document using a single tag, this usually results in all of the text being

displayed as belonging to that one tag type (usually by changing background or text

color), which can be very distracting for the annotator. A non-consuming extent tag

has the interpretation of being applied to the whole document, but without the visual

distractions (this is similar to a metadata tag, but a “non-consuming extent tag” can

be linked to other tags in the annotation should the need arise).
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5.1 Existing annotation tools

While the lists of general and task-specific desiderata listed in the previous section

seem fairly straightforward, at the time the annotation work for this dissertation be-

gan (summer 2010), it was surprisingly difficult to find an annotation tool that met

all of them. While it is true that a recent (summer 2012) search of the LRE Map

returns over 200 results for “annotation tools”, the Map was not available at the time

this research began. Therefore, the search for tools was generally limited to those that

were well-known and readily available. The tools that were considered and tested for

this dissertations light annotation task are described below.

GATE - The General Architecture for Text Engineering2 is an open source platform

for text annotation and processing developed at Sheffield University (Cunningham

et al., 2010). GATE is widely used for annotation tasks, and works on all major

operating systems. In addition to providing annotation support, GATE provides

a full set of plug-ins for automatic text processing, such as part-of-speech tagging,

tokenization, sentence splitting, etc., as well as other features such as annotation

merging and inter-annotator agreement scoring.

However, due to the large number of plug-ins and other features, the learning

curve for GATE is quite steep, and while creating new extent tags was relatively

easy, developing original link tags was much more difficult, as GATE seemed geared

towards creating links automatically, then adjudicating them by hand. This setup

was not feasible given the novelty of the light annotation scheme being used, as there

were no existing systems suitable for the task, and one could not be built and tested

2http://gate.ac.uk/
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until the annotation task was complete.

Additionally, the version of GATE that was available in 2010 did not create stand-

off annotation, but rather inserted nodes into the text where tags were meant to start

and end, then had the tag information at the end of the document, as shown below:

<Node id="1092"/>Monitor<Node id="1099"/> in NICU til

<Node id="1112"/>CXBC<Node id="1116"/> returns.

<Annotation Id="91" Type="Intervention"

StartNode="1092" EndNode="1099"/>

<Annotation Id="92" Type="Investigation"

StartNode="1112" EndNode="1116"/>

The nodes that GATE added to the text made the documents extremely difficult

to analyze outside of the GATE architecture, and the difficulty in creating links made

the platform unusable for the domain-expert annotation task.

Callisto - Callisto3 was developed at the MITRE corporation and comes with many

annotation specifications already installed, and it is possible for users to create their

own extent-based specifications. However, while some pre-loaded tasks in Callisto do

contain their own sets of link tags, at the time this program was being tested users

who wished to define their own annotation specifications using link tags were required

to not simply create their own schema, but write their own plug-in for the program in

Java. While the resulting system would have been relatively easy for the annotator

to use, having to revise the plug-in each time a change was made to the specification

would have slowed down the MAMA cycle for the light annotation task.

3http://callisto.mitre.org/

78



CHAPTER 5. TOOLS FOR LIGHT ANNOTATIONS

The Brandeis Annotation Tool (BAT)- BAT has been used for a variety of

annotation tasks, including creating the gold standard for SemEval tasks and evalua-

tions (SemEval 2010), and provides a task-specific web interface for authorized users

(Verhagen, 2010). While BAT provides excellent support for adjudicating the work

of multiple annotators, it was designed for layered annotation, where each piece of

an annotation task is done individually from the others by all annotators (similar to

the idea of Single-facet Annotation described in Chapter 4.1.2), then adjudication is

performed on each layer before moving on to the next.

This system is extremely useful for tested annotation tasks with multiple annota-

tors and judges. However, for any annotation specification that is still being revised

in the MAMA cycle, a layered annotation format makes it much more difficult to find

problems in the specification, as some will take a long time to appear. Additionally,

at the time BAT could only annotate complete whitespace-separated tokens, which is

potentially problematic for certain bioclinical annotations. For example, if a patient

is recorded as “HIV-” it maybe be necessary to annotate “HIV” separately from “-”,

a functionality that did not exist in BAT at the time.

Other tools were also examined as options for creating a light annotation task,

such as Knowtator (Ogren, 2006), Protégé4, and SLAT 2.0 (2010). However, many

of the same problems described above continued to reappear: steep learning curves,

difficult to create and modify annotation schemas, or simply unable to create all the

necessary aspects of the task being designed. This is not to suggest that these tools

are poorly designed or otherwise should not be used for annotating corpora—indeed,

their popularity proves that they are all well-suited for corpus annotations. However,

4http://protege.stanford.edu/
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the combination of requirements for domain-expert annotation tasks in general and

the specific light annotation task undertaken for this dissertation required that a new

annotation tool (and an accompanying adjudication tool) be created.

5.2 MAE - Multi-purpose Annotation Environment

In order to provide a suitable environment for a light annotation task for domain

experts, the Multi-purpose Annotation Environment (MAE) was built. MAE is a

lightweight annotation tool written in Java with an SQLite backend database5. It

has been tested on a variety of operating systems, including Windows Vista and XP,

Mac OS X, Ubuntu, Linux Mint 12, and Red Hat. It should be compatible with any

operating system that can run Java 6 or higher.

In terms of the desiderata outlined above for a domain-expert annotation tool,

MAE meets all of the specifications:

Easy to install: MAE is written in Java and distributed as a .jar file, so on most

platforms running MAE simply requires double-clicking on the application. Aside

from ensuring that Java is installed and up-to-date (which most operating systems

do automatically), no setup or installation is required.

Simple task creation and modification: In order to define an annotation tagset,

users are asked to create what is essentially a Document Type Definition (DTD) file,

with a few modifications to account for some of MAE’s features. As was previously

discussed, Dipper et al. (2004b) noticed in their survey of annotation tools that

5SQLiteJDBC driver created by David Crawshaw http://www.zentus.com/sqlitejdbc/
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annotation software often has to make a trade-off between reliable output and ease of

beginning to annotate. MAE attempts to bridge this gap by requiring that the user

have some idea of what they want to use as tags, but by using a DTD rather than a

more complicated XML schema, the barrier to starting an annotation project is still

rather low. The DTD for the annotation task described later in this dissertation can

be found in Appendix B, and a sample DTD for a different task is shown here:

<!ENTITY name "NounVerbTask">

<!ELEMENT NOUN ( #PCDATA ) >

<!ATTLIST NOUN start #IMPLIED >

<!ATTLIST NOUN type ( person | place | thing | other ) >

<!ATTLIST NOUN comment CDATA >

<!ELEMENT VERB ( #PCDATA ) >

<!ATTLIST VERB tense ( past | present | future | none ) >

<!ATTLIST VERB aspect ( simple | progressive |

perfect | perfect progressive ) >

<!ELEMENT ACTION EMPTY >

<!ATTLIST ACTION relationship ( performs | performed_by ) >

The ENTITY tag provides the name of the annotation, and each !ELEMENT tag

defines either an extent tag (tags specifying “#PCDATA” or link tags (tags specifying

“EMPTY”. “!ATTLIST” entries associated with each tag define an attribute for that

tag, which can either be character data or a list of options. To create a non-consuming

tag, the attribute “start” is declared and set to “#IMPLIED”, which allows the tag

to be created but not associated with any of the text in the file.

Using these DTD features, it is quite easy to create new tags and attributes for

any light annotation task, and DTD files can be quickly modified should a task spec-

ification be changed.
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Easy to use: Very little effort is needed to begin annotating in MAE. The annotator

loads the DTD into MAE in order to create the database structures needed to store

the information about the tagset being used, and then loads the next text file that

will be annotated. No preprocessing needs to be done to the files before they are

loaded (though they do need to be UTF-8 encoded, especially if the language being

annotated is not the operating system default). Figure 5.1 shows MAE with the

annotation scheme shown above, with a sample file loaded.

Figure 5.1: MAE: Multi-purpose Annotation Environment

The text of the file being annotated is shown in the upper portion of the window,

and each tag defined in the DTD gets its own table/tab in the bottom of the window.

Each tag is also given its own color, so it is easy to tell by looking at the text how

each word has been annotated.
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New extent tags are easily created by highlighting the text and right-clicking, then

selecting the appropriate tag from the menu that appears. That tag is then added

to the related table, where the tag’s attributes can be filled in. Document-unique

IDs for the tags are automatically generated by MAE for each tag created, for easy

reference in link tags.

Links are easily created by holding the control key (command key on Macs) and

left-clicking on each of the entities that will be included in the link. It is possible for

users to link to non-consuming tags as well.

Tags can be deleted both from the text window by highlighting all or part of the

tag and right-clicking, as well as from the tables by highlighting the row describing

the tag being removed. If an extent tag is deleted, any link tags that use the deleted

extent tag as an anchor will also be removed, in order to maintain the consistency of

the annotation.

Clear display: Because MAE is designed for light annotation tasks, the display is

equally light and easy to interpret. The text is highlighted where extent tags have

been placed, and the tables display all of a tag’s attributes for easy modification. Ad-

ditionally, MAE contains some features that make finding the correct tag in the table

easier: selecting an annotated extent in the text window will highlight all the rows

in the tables where there is a tag involving that extent, including link tags. Newer

versions of MAE include functionality that will auto-select the associated text in the

upper window when a tag’s ID is double-clicked.

All necessary capabilities for task: In addition to creating extent tags, link tags,

and non-consuming tags (these are created from the “NC Elements” menu at the
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top of the screen), MAE has other functionalities that are useful for a variety of

annotation tasks. It supports overlapping tags, links between annotated text as well

as non-consuming tags and annotation of partial words.

MAE outputs character-based stand-off XML, which allows the user-generated

annotation to be easily merged with other annotations, either those created by hand

or those generated by NLP systems. A sample of the output format is shown here,

based on the DTD provided above:

<?xml version="1.0" encoding="UTF-8" ?>

<NounVerbTask>

<TEXT><![CDATA[

JABBERWOCKY

By Lewis Carroll

’Twas brillig, and the slithy toves

Did gyre and gimble in the wabe;

All mimsy were the borogoves,

And the mome raths outgrabe.

]]></TEXT>

<TAGS>

<NOUN id="N0" start="-1" end="-1" text="" type="person"

comment="author = Lewis Carroll" />

<NOUN id="N1" start="61" end="66" text="toves" type="thing"

comment="" />

<VERB id="V1" start="80" end="86" text="gimble"

tense="past" aspect="" />

<ACTION id="A1" fromID="V1" fromText="gimble" toID="N1"

toText="toves" relationship="performed_by" />

</TAGS>

</NounVerbTask>

XML is always a bit hard to simply read, but the selection above shows a non-

consuming tag that is being used to indicate the author of the piece, a noun tag for

“toves” and a verb tag for “gimble”. The noun and verb tags are then connected by
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an action link tag using the ID numbers of the extent tags that were automatically

generated by MAE.

5.3 MAI - Multi-document Adjudication Interface

The task of adjudication—determining which annotator tags are correct, and creating

a Gold Standard corpus from them, as well as adding any tags that might have been

left out—can be a difficult and time-consuming process. While it is possible to do

through the use of Python scripts, an adjudication tool that was designed to work with

MAE’s output and could display the annotations and discrepancies to the adjudicator

seemed a preferable way to solve the problem.

Therefore, the Multi-document Adjudication Interface (MAI) was written as a

complement to MAE in order to ease the process of Gold Standard creation. MAI is

built on the same basic code base as MAE, and provides a simple interface that allows

users to load the annotations from different annotations over the same document,

then compare the annotations one tag at a time and determine which tags should be

included in the gold standard. Figure 5.2 shows a version of the MAI interface using

the same annotation scheme shown previously.

When a tag is selected from the menu on the left, each text extent that was

annotated with that tag by the annotators is highlighted in the text window: text in

blue was annotated by all of the annotators, and text in red was annotated by some

but not all of the annotators. When an extent is selected, the tags and attributes

from each annotator at the selected location is displayed in the table at the bottom

of the screen, and the adjudicator can select which one to copy to the gold standard.

Once a tag is in the gold standard the text at that location in the top window turns
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Figure 5.2: MAI - Multi-document Adjudication Interface
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green. The attributes of gold standard can be modified, so it doesn’t matter if all the

annotators were incorrect. The adjudicator can also add tags that were left out of all

of the annotations.

5.4 Use and availability of MAE and MAI

MAE and MAI, while initially built for the light annotation task described in this

dissertation, have since been distributed and used for a variety of annotation tasks,

including Chinese verb and aspect annotation, Russian morphemes, and spatial an-

notation tasks, as well as the 2012 i2b2 NLP challenge corpus.

MAE and MAI are both open source under the GNU GPL v3 license, and are

available for download through Google Code:

MAE: http://code.google.com/p/mae-annotation/

MAI: http://code.google.com/p/mai-adjudication/
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Chapter 6

Settings for a Domain Expert

Clinical Task

In order to explore the potential uses of light annotation tasks, Part II of this disser-

tation presents the PERMIT (Patient Evaluation Resource for Medical Information

in Text) corpus, an annotated dataset of hospital discharge summaries built around

a light annotation task for the clinical domain. The PERMIT corpus implements a

prototype of the light annotation methodology, as the lessons learned from creating

the dataset influenced the principles for light annotation tasks provided in Section

4.3. The annotations were created using the software described in Chapter 5, which

was built initially for the PERMIT corpus.

This chapter describes the medical settings that informed the creation of the

annotation task: patient selection for clinical trials. Chapter 7 describes the MAMA

cycle of the PERMIT corpus and analyzes the light annotation methodology and its

applications, and Chapter 8 explores some potential ways for the corpus to be used

in NLP systems in the clinical domain.

89



CHAPTER 6. SETTINGS FOR A DOMAIN EXPERT CLINICAL TASK

6.1 Goal of the case study

As Section 1.4.4 discussed, a variety of annotation tasks have already been undertaken

in the clinical domain, from part-of-speech tagging to medicine recognition to medical

event identification. One particularly interesting challenge in medical research is

identifying patients who are eligible to participate in clinical trials of medications

and other treatments for conditions and diseases.

Under NIH grant number 5R21LM009633-02 (PI: James Pustejovsky), researchers

at Brandeis University and the Channing Laboratory at Brigham and Women’s Hospi-

tal (BWH) collaborated to explore the ways that the patient selection process could

be aided by NLP techniques, particularly those involving temporal analysis of the

data. Specifically, the researchers undertook a project to mimic the patient selec-

tion process for a mock retrospective case-control study, and to create an annotation

scheme to capture the information necessary to identify qualified patients, and then

use the resulting annotated corpus to study how an NLP system could make use of

the annotated information.

6.2 Methods

The researchers at BWH provided insight into the patient selection process, suggested

eligibility criteria for the mock-study, arranged for medical researchers to perform

the annotation, and provided feedback on the annotation schemes. The annotation

schema and process was headed by the author of this dissertation, with support from

the grant’s PI, James Pustejovsky.

Due to difficulties in obtaining permission to share medical data across institu-
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tions, it was determined that the annotation would be done using discharge summaries

from the MIMIC II Clinical Database (physionet.org, 2010). Eligibility criteria for the

mock-study would be based on the types of criteria used in actual clinical research,

and the annotators would be professionals qualified to evaluate medical records. More

information about the specifics of the annotation will be provided in Chapter 7; the

remainder of this chapter will discuss the settings in which retrospective case-controls

studies traditionally take place.

6.3 Research settings

In order to create an annotation scheme that is appropriate to the project being

undertaken, it is important to have an thorough understanding of the settings in

which the project is being done. In the case of the annotation project described here,

it is necessary to understand what a retrospective case-control study is, why they are

performed, and how they fit into the panoply of clinical research. In the rest of this

chapter, settings for current practices in large-scale medical studies (epidemiology)

will be discussed (Section 6.3.1, in addition to eligibility criteria for medical studies

(Section 6.3.2), and the format of the type of data being examined in this annotation

project (Section 6.3.3).

6.3.1 Current epidemiology practices

In order to fully set the stage for the annotation and NLP task described in the next

chapters, the following descriptions of epidemiological studies are provided; they are

paraphrased from Chapter 6 of Modern Epidemiology by Kenneth Rothman, Sander

Greenland, and Timothy Lash (2008).
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Experimental and nonexperimental studies – Experimental studies are, put

simply, studies involving test conditions and groups of people deliberately given treat-

ments (or placebos) to test for outcomes. In contrast, nonexperimental studies rely on

patients being exposed to different situations by their own actions or circumstances.

There are a variety of reasons why nonexperimental studies are run in lieu of experi-

mental ones—it is, naturally, unethical to expose study participants to cancer-causing

agents on purpose, but observing the effects of such agents on patients who were ex-

posed to them through other means is not only ethical, but vital to expanding medical

knowledge.

Cohort and case-control studies – Both of these can be types of nonexperimental

studies. Cohort studies have “two or more groups of people that are free of disease

and that differ according to the extent of their exposure to a potential cause of the

disease” (pg. 94). The researcher then observes how frequently each cohort is affected

by disease (the authors give an example of people working with chemicals, with each

cohort being exposed to a different chemical).

Case-control studies, on the other hand, are conducted by choosing a popula-

tion (such as chemical workers) and a particular disease to be studied—cases are the

members of the population who are afflicted with the disease, while controls are un-

affiliated. This allows the researcher to compare the cases and controls by matching

them demographically (or by other related factors) in order to determine how each

factor might affect whether a person will contract the disease.

Prospective and Retrospective Studies – Prospective and retrospective studies
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are also both forms of nonexperimental studies. The authors note that previously

the literature would use the term “cohort” interchangeably with “prospective” and

“case-control” interchangeably with “retrospective” but that this conflation of terms

is false and misleading: a cohort study can be prospective or retrospective, and the

same is true for case-control studies. The difference between prospective and ret-

rospective studies (as the terms are used now) is based primarily on the relational

timing of events: studies where patients are not recruited until after they show signs

of a disease are retrospective, while studies where patients are recruited on the basis

that they may become afflicted are prospective1.

Given these distinctions between different types of clinical studies, the rational be-

hind using a nonexperimental retrospective case-control paradigm for the case study

presented in this dissertation can be explained:

Nonexperimental: Because the purpose of the grant was to explore the use of

annotation and NLP techniques in clinical research, rather than actually perform a

medical study, it was not necessary or feasible to adopt an experimental study design.

However, nonexperimental studies are commonly used for medical research, and as

they rely on examining existing medical records, the application of annotation and

NLP techniques was much more immediate, and still very relevant to the medical

research field.

Retrospective: From speaking with the consultants at BWH, it became clear that

1This description is somewhat simplified, and studies may not be purely prospective or retro-
spective, but can be a mixture of both. However, this definition is sufficient for the purposes of this
discussion and dissertation.
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retrospective studies rely more heavily on patient records than do prospective studies,

where ongoing patient interviews for data collection are much more common. Again,

as the purpose of this research was to examine the use of NLP for practical contri-

butions to medical research (but not actually perform medical research or interviews,

as that was outside of the permissions of the grant), a retrospective paradigm was

adopted.

Case-control: The case-control paradigm for medical studies requires an additional

level of analysis that is quite intriguing–not only do the cases have to meet particular

eligibility criteria to be included in a study, they must be matched with people from

the general population that have similar demographic characteristics so that more

general trends about the condition being studied can be analyzed. This additional

requirement of matching criteria (an auxiliary set of selection criteria that ensure the

control group is matched to the case group to help remove other possible influences

on the outcome of the study) is one that seemed to be a good blend of NLP and

statistics (a specialty of the BWH researchers included in the grant) and so it was

made a part of the annotation/NLP project as a whole.

From a medical research perspective, there are also distinct advantages to the

retrospective case-control study paradigm. Retrospective studies are often used for

rare diseases because they allow researchers to examine data collected at different

points in time (Coggon et al., 1997). Additionally, retrospective studies are much less

expensive to run than traditional experimental cohort studies because they do not

require the presence of the people being studied (Clark and Doughty, 2008).

Naturally, the retrospective paradigm is not without drawbacks. Retrospective
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case-control studies are traditionally more susceptible to observational and sampling

bias (Mann, 2003), as well as selection bias (Geneletti et al., 2009), particularly

when it comes to matching controls to cases on information that is not commonly

found in medical records. For example, income, location, education, etc. can all have

effects on patients, and can therefore affect study outcomes in ways that may not

be obvious. However, even with these problems retrospective case-control studies are

widely used in research, and it seems possible that use of NLP techniques may in fact

alleviate some of these problems, as computers can make analyzing medical records

significantly faster, and the more records that are examined, the more likely it is that

people who fully meet the eligibility and matching requirements can be found.

6.3.2 Eligibility criteria

The requirements used to determine who is eligible to be included in a medical study

are referred to as ‘eligibility criteria”2 In order to fully understand how to use these

criteria in a mock case-control retrospective study, it is important to fully understand

their role in the study and the types of criteria that are frequently used.

The website clinicaltrials.gov, which contains information about clinical tri-

als that are NIH-funded, as well as privately funded studies, defines these criteria

as “The medical or social standards determining whether a person may or may not

be allowed to enter a clinical trial. These criteria are based on such factors as age,

gender, the type and stage of a disease, previous treatment history, and other medical

conditions.” Eligibility criteria are almost always written in natural language, as they

are intended to be read and understood by human researchers searching for qualified

2They are also sometimes referred to as “inclusion/exclusion criteria”, “selection criteria”, or
“enrollment criteria”: this dissertations uses all of these terms interchangeably.
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study participants. They are also divided into two types: inclusion criteria, which

are criteria that must be met in order for a patient to qualify, and exclusion criteria,

which are criteria that disqualify a person from participating in the study if they are

met.

Essentially, eligibility criteria help to determine the cohorts or the case/control

groups for a study by selecting the groups of people who are appropriate for the

treatments being tested or diseases being examined. For example, an ongoing study

examining the effect of pre-natal Vitamin D on asthma rates in infants (the VDAART

study3) requires (inclusion criteria) that expectant mothers entering the study be

between 18 and 39 years old, be between 10 and 18 weeks pregnant when they enter

the study, and that they have a “personal history of asthma, eczema, allergic rhinitis”

(Weiss, 2009).

There are also some restrictions (exclusion criteria) on who can participate: women

who have chronic medical conditions, who already take more than 2,000iu of Vitamin

D a day, who have a “multiple gestation pregnancy” (i.e., are pregnant with twins,

triplets, etc), or who used IVF or other reproduction techniques to become pregnant

are all unable to participate in the study (ibid.). These restrictions help to remove

confounding variables that could muddy the clarity of the study outcomes by keep-

ing the study population heterogeneous enough to make any positive (or negative)

results clearly correlate with the two factors being studied (in this case, Vitamin D

and asthma).

The VDAART eligibility criteria are fairly straightforward—the investigators want

to know whether Vitamin D can reduce the prevalence of asthma in the children of

parents with asthma (or related diseases), and so they are looking at people who

3http://www.vdaart.com/
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meet those conditions, while removing people from the pool whose circumstances may

interfere with the test (i.e., smokers, mothers who had difficulty getting pregnant, and

those with other chronic illnesses that may affect the child).

While the VDAART study is a prospective study that was actively recruiting

participants (a setup that was not going to be used for the NLP research described

here), the eligibility criteria are a good example of the types of information that can

be used to determine who can be included in any type of clinical trial, including

retrospective studies.

The types of information needed to properly balance a medical study can vary

widely, and not all questions asked of potential patients are necessarily ones that can

be answered by examining existing medical records such as discharge summaries—in

another study, this one about home pregnancy tests (Nettleman, 2006), one of the

criteria was that the women entering the study do not wish to become pregnant, which

is not a piece of information that is likely to appear in most clinical records. However,

that study also has age restrictions for participation, and age is certainly information

that can be found in medical records, either directly (“34 y/o”) or indirectly (using

the date of birth). Therefore, even in studies where the majority of criteria deal

with information not commonly found in medical records, a system that uses NLP

techniques for examining medical records could still be useful for narrowing the field

of candidates based on existing records.

Many eligibility criteria are complex, in terms of semantics, syntax, and/or com-

putation. The challenges inherent in parsing and evaluating the criteria themselves

are many, but they are not the focus of the work described in this dissertation.

Significant work has been done in this area by researchers at Columbia University,

including a literature review of eligibility criteria representations (Weng et al., 2010),
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using e-screening to help identify patients for studies (Li et al., 2008; Botsis et al.,

2010), and the development of ELiXR, a UMLS-based system for representing eligi-

bility criteria in studies (Weng et al., 2011). This work is extremely valuable, and its

existence allows other researchers to focus on other aspects of clinical research, such

as the analysis of discharge summaries and the use of annotation schemes and NLP

techniques presented here.

However, simply because this research does not focus specifically on the difficulties

of representing complex eligibility criteria does not mean that it will ignore them

entirely. One focus of the research was to examine temporal relations in clinical

discharge summaries, and so temporal constraints in eligibility criteria must also be

examined.

Temporal modifiers in Selection Criteria

Temporal modifiers are often important parts of study selection criteria. For example,

they can be used to ensure that all patients included in the study were in similar stages

of their diseases or healing process (e.g., cardiac event within the past 2 years) at the

time they were recruited or their records added to the analysis. Also, because medical

care standards change frequently, placing limits on when events must have occurred

(e.g., between 2005 and 2010), researchers can avoid analysis errors that would be

caused by conflating the results of completely different treatments.

Temporal constraints in eligibility criteria are not limited to particular types of

clinical studies, and are used in many different fields of medicine. A recent study

of the selection criteria listed on clinicaltrials.gov showed that 11.07% of the

corpus examined contained temporal concepts—the largest group of concepts found

in the selection criteria (Luo et al., 2010).
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A PubMed search for case-control studies (performed in 2010) revealed a plethora

of eligibility criteria using temporal constraints. Some examples of these criteria are:

� “650 patients who underwent elective or urgent CABG with cardio pulmonary

bypass . . . between 1 January 2001 and 31 December 2004” (Badreldin et al.,

2010)

� “. . . patients with a radiological confirmed diagnosis of a first hip fracture within

the past three years.” (Jha et al., 2010)

� “. . . a history of low back pain and/or low back related leg pain over the previous

6 months . . .” (Moloney et al., 2010)

� “. . . at least 6 months of isoniazid or 4 months of rifampin. . .” (Xu and Schwartz-

man, 2010)

� “. . . patients who had a minimum number of 2 visits for diabetes and who had

a diagnosis of diabetes mellitus for more than 6 months . . .” (Hueston, 2010)

Not only were these studies conducted by researchers in very different medical

research areas, but this list also describes criteria regarding medications, diseases,

conditions, and actions taken by the patient, all with time-related modifiers. The ex-

istence of these temporal modifiers elevates patient selection from a simple dictionary-

based search to one requiring more sophisticated information extraction techniques,

including more sophisticated temporal reasoning.

An analysis of the eligibility criteria on http://clinicaltrials.gov as of Oc-

tober 5, 2010 using regular expressions to locate and count time-related temporal
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expressions in the studies listed at that time; a total of over 96,000. Table A.1 con-

tains a breakdown of the different temporal expressions found in the eligibility criteria,

and can be found in Appendix A.

While this table doesn’t represent all temporal expressions found in clinical trial

criteria (it includes no dates, and the analyzed text does not include the age re-

strictions on the studies), it is clear that time is an important factor in selection for

medical studies. On average, each clinical trial has 2.27 time-related expressions in

the selection criteria. Since the list of analyzed expressions is small, we can assume

that the actual number of time sensitive queries in trial selection criteria is actually

larger.

6.3.3 Structure and Language of Discharge Summaries

In addition to analyzing the general setup of medical studies, it is important to be

aware of attributes of the type of data that will be processed; in this case, medical

discharge summaries.

It is common for medical records, particularly discharge summaries, to be divided

into sections containing different types of information about the patient. The headers

show whether the information in that section is related to the patient’s medical status

(“Allergies”, “Past Medical History”), about the patient’s family (“Family Medical

History”), about actions taken while the patient was at the hospital (“Course of

Treatment”), or recommendations for the future (“Discharge Instructions”). In order

to take advantage of the information these headers provide, Denny et al. (2008) de-

veloped SecTag, a system for identifying and classifying header information in clinical

notes. While the code for this system is not available, they do provide a database of
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section headers that have been categorized into super-types, a resource that will be

included in the NLP work described in Chapter 8

In an analysis of six different genres of medical records including discharge sum-

maries, Mowery et al (2009) determined that “. . . the following sections alone can be

used to predict a condition as historical: Past Medical History, Allergies and Social

History. Clearly, section headers provide important context for anchoring medical

events in time.

Within each section, the text could consist entirely of narrative, lists (usually

of medications), or a mixture of both. Discharge summaries also contain multiple

forms of temporal expressions, in relatively high frequency: Mowery et al. also found

that Discharge Summaries contain more temporal expressions than any other genre

of medical record (Mowery et al., 2009).

However, the presence of temporal expression in discharge summaries does not

necessarily imply that the temporal information is correct. In a study that compared

the stated temporal expressions in clinical reports to the times those events actually

took place (as verified by other hospital records), Hripcsak et al. discovered that the

reported times showed significant deviation (roughly 20%) from the time the event

actually took place (Hripcsak et al., 2009). This finding provides a fascinating insight

into the way that medical events are reported in free-text records, and will need to be

accounted for (or knowingly discounted) in any NLP analysis of discharge summaries.

6.4 Overview of clinical trial settings

In order to create a case study that can be considered representative of “real” medical

studies, it is important to determine what generalizations can be made about clinical
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studies. Overall, the settings presented here can be divided into two categories: those

that determined the type of case study that would be performed and presented in

this dissertation, and those that will need to be accounted for in the case study itself.

Of the first type, it is clear that any NLP-focused case study (as opposed to one

that is focused on medical research or an actual clinical trial) will be best approached

by using a nonexperimental, retrospective, case-control paradigm, as those settings

are ones that are actually used in medical research (and therefore any findings will

be applicable to other studies), but do not require that actual medical research be

done in order to approximate the conditions such studies are done in (and so frees

the NLP researchers from having to obtain permission to do actual medical studies

for which they are not qualified).

Of the second type, we have study conditions that the NLP research will be trying

to emulate in the annotation and NLP task. These can be itemized as follows:

� The study must have identified eligibility criteria;

� The study must also have criteria for matching case and control groups;

� The eligibility criteria should be representative of those used in existing clinical

trials;

� The eligibility criteria should contain at least one form of temporal modifier;

� The discrepancies in reported and actual times of events needs to be accounted

for;

� The annotation and/or NLP system needs to account for the structure of the

discharge summaries.
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How these conditions are accounted for in the case-control study are presented in

the next chapter.
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Chapter 7

Domain Expert Annotation

One of the outcomes of the research described here is the creation of a corpus anno-

tated by domain experts in a light annotation task. However, as with most corpora the

creation process of the annotation was not a simple, one-step process. The MATTER

cycle contains within it the MAMA (model-annotate-model-annotate) cycle specifi-

cally because corpus annotation tasks nearly always require multiple iterations before

reaching their final forms. Because one of the goals of this dissertation is to explore

the application of the light annotation methodology for domain experts, this chapter

will work through the MAMA cycle that was used to create the final annotation of

the Patient Evaluation Resource for Medical Information in Text (PERMIT) corpus.

Section 7.1 of this chapter fully explains the specific criteria used for the mock-

study described in the previous chapter and how the corpus used for annotation was

chosen. Section 7.2 explores the iterations of the MAMA cycle used in order to

create the PERMIT corpus, the annotated, gold standard corpus created through the

MAMA process. Finally, Section 7.3 evaluates the inter-annotator agreement for the

corpus, and examines how the light annotation methodology affected the annotation
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task1.

7.1 Annotation Task Settings

As Chapter 3 described, the first steps that must be completed before entering the

MATTER cycle is to define the goal of the dataset and the corpus that will be used.

This section describes the eligibility and matching criteria that were used to define

the goal of the annotation task, as well as how a suitable corpus was chosen and the

backgrounds of the annotators.

7.1.1 Defining the goal: criteria selection

As discussed in Section 6.1, the overall goal of the research undertaken by Brandeis

University and the Channing Laboratory was to explore the use of NLP techniques

in clinical data by mimicking the properties of retrospective, case-control studies and

the procedures used in them to find qualified participants. In order to accomplish this

goal a set of eligibility and matching criteria had to be developed, and these criteria

had to then be applied to a corpus of clinical documents. The patient eligibility

criteria that were used as the basis for the annotation task are:

Selection criteria:

General criterion 1: must be under 55 years old at time of admission

General criterion 2: must have diabetes

Case criterion 1: must have had a cardiac event within 2 years of admission

date

1Some of the information in this chapter was first presented in Stubbs and Pustejovsky (2011)
and Stubbs (2012).
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Control criterion 1: no history of cardiac events

Matching criteria:

Matching Criterion 1: race

Matching Criterion 2: sex

Matching Criterion 3: lipid measurement w/in 6 months of admission

Matching Criterion 4: information on diabetic treatment

Matching Criterion 5: lipid medications

These criteria were not selected randomly, but were modeled after medical trials

that have been and are currently being run, in order to ensure that the different

criteria would be relatively likely to appear in the same documents. Specifically, the

relationship between cardiac events and diabetes is one that exists but is being studied

(Sumner, 1999; Armitage et al., 2007; Zürn, 2011), and so provided a reasonable base

for the mock-study being created for the annotation project.

In order to mimic the case-control nature of some retrospective studies, some of

the selection criteria apply to all candidates (age and diabetes status), one applies

only to the study’s “cases” (recent cardiac event), and one applies to the “controls”

(no history of cardiac events; i.e., the absence of the case criterion).

The matching criteria were based on general factors that the researchers at Chan-

ning suggested as plausible confounding factors—since no actual medical study was

being performed, these criteria were not vetted by an Internal Review Board or placed

under any sort of medical review; their presence is primarily to mimic the case-control

study paradigm, rather than to provide a basis for actual medical analysis.
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7.1.2 Corpus selection

Initially, the corpus for this research was to be provided by Brighman and Women’s

Hospital medical records, but it was not possible to obtain permission from the or-

ganization’s Internal Review Board for those records to be released to a different

institution. Therefore, the corpus was instead collected from that MIMIC II Clini-

cal Database (physionet.org, 2010) version 2.4. The MIMIC database contains over

26,000 de-identified medical records, most of which include hospital discharge sum-

maries from Intensive Care Units of Beth Israel Deaconess Medical Center in Boston.

These records have the names of all patients and doctors changed, and the times have

been shifted systematically throughout the documents in order to maintain temporal

consistency as well as anonymity (Clifford et al., 2010).

Unfortunately, in order to de-identify the data as much as possible, information

about the patients’ race was removed from the records, so Matching Criterion 1 did

not represent a significant portion of the resulting annotation. Fortunately, as the

corpus was not intended to be used for actual medical research, this did not have an

adverse effect on the annotation process, though the annotations themselves could

not be used for analysis of matching procedures later on.

In order to create a corpus that was both representative in terms of the differ-

ent ICUs that the records came from, and balanced with respect to the criteria the

annotation task was based on, the documents in the corpus were a mix of randomly

selected files, and files that were selected based on their containing keywords related

to the selection criteria. Some files were randomly selected both to make the PER-

MIT corpus representative of the the larger MIMIC corpus, but also to ensure that

any NLP system built later on would be able to disregard completely unrelated doc-
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uments. Only discharge summaries were used in the corpus, as they provide the

clearest description of what a patient experienced while in the hospital. Table 7.1

contains an overview of what keywords were used in the selection process, and how

many documents containing each keyword were randomly selected from the database.

keyword number
“diabetes” 16
“DMII” 8
“heart attack” 9
“insulin” 14
“LDL” 7
“myocardial infarction” 16
randomly selected 16

total: 86

Table 7.1: Keywords used to find initial annotation corpus

In addition to the 86 keyword-based and randomly selected files, the corpus con-

tained another 14 discharge summaries that were randomly chosen when the clinical

trial model was first being developed (described later in Section 7.2.1), and different

annotation ideas were being explored. In total, the PERMIT corpus contained 100

discharge summaries that were a mix of randomly selected files (to help create a rep-

resentative corpus) and keyword-selected files (to help maintain balance towards the

goal of the annotation).

7.1.3 Annotators

The intention for this annotation was always that it would be a domain expert task:

any inference about whether a patient has a particular condition or medical history

based on clinical documents requires that the document annotator be qualified to
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interpret the documents. Therefore, two medical researchers were asked to perform

the annotations: one is a Registered Nurse who is regularly involved in medical

research, and the other is involved in patient selection and data collection for medical

studies; both are employees of Harvard Medical and Brigham and Women’s Hospital

in Boston, MA.

A third annotator with experience in medical billing was also used to test initial

versions of the annotation guidelines for the light annotation task, but this person’s

medical billing experience proved to not be sufficient to perform an annotation of

the full corpus2. This annotator’s input was useful, but ultimately these annotations

were not included in the PERMIT corpus.

7.2 The PERMIT annotation cycle

The methodology for creating light annotation tasks for leveraging domain expert

knowledge described in Chapter 4 was not the original model for the PERMIT anno-

tation. In fact, it was by working through the MAMA cycle with the PERMIT corpus

that inspired the idea of the light annotation, and eventually informed the creation

of the principles and methodology for annotation tasks of that type. In this section,

the full MAMA cycle for the PERMIT corpus is described, from initial plans for a

more semantically “dense” model to the final light annotation model and guidelines.

2This should not be taken to indicate that medical coders cannot be used for clinical annotations;
in fact, coders have made excellent annotators for other clinical annotation tasks.
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7.2.1 Initial Model: CLEF

As discussed in Section 1.4.4, other projects have examined the problem of annotating

medical documents. Therefore, rather than build a model from scratch, original plans

for this research called for the annotation to be based on an existing specification from

a different corpus.

Initially this project was going to use the Clinical E-Science Framework (CLEF)

(Roberts et al., 2007) annotation schema and guidelines (working group, 2007) for the

PERMIT corpus. CLEF has two extent tags, Entities and Signals, and two link tags,

Coreference and Relationships. Each of these tags has subcategories that are used to

further classify the text being annotated; for example, Entities is further subdivided

into Condition, Intervention, Investigation, Result, Drug or Device, and Locus.

However, an initial annotation effort using only the different Entities tags quickly

made it apparent that using the CLEF schema and guidelines would be extremely

time-consuming, and would also require substantial changes. The existing CLEF

guidelines were unclear in terms of defining what made something a ‘condition’ rather

than a ‘result’, or an ‘intervention’ instead of an ‘investigation’. Additionally, CLEF

did not have a way of capturing demographic information, an important factor in the

matching criteria

7.2.2 Initial Annotation: CLEF Entities

Two documents were chosen randomly from the MIMIC database, and the R.N. an-

notator was asked to apply only the Entities tags to the files based on the available

CLEF guidelines (working group, 2007). Unfortunately, the guidelines proved to be

unclear in terms of distinguishing sufficiently between the different types of Entities,
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and much time was spent between the researchers and the annotators in discussing

the different possible applications of the different tags. Additionally, the annotated

CLEF corpus was not (and still isn’t) available for download due to problems ob-

taining permission to de-identify and distribute the corpus (R. Gaizauskas, private

communication, December 17, 2009).

Eventually, however, the annotation of the sample discharge summaries using the

CLEF extent guidelines was completed, and the results were evaluated.

7.2.3 Initial Evaluation

The Entity annotation with the CLEF guidelines required that the annotator (and

everyone else involved in the project) be involved in long, detailed discussions attempt-

ing to determine the semantic distinctions between the different classes of entities, a

process that was difficult, time-consuming and had little to do with the goal of the

corpus as a resource for evaluating patient records in relation to the selection and

matching criteria.

While having a corpus annotated with a specification as detailed as CLEF would

certainly be a useful resource for general NLP purposes, the time it would have taken

to create and adjudicate the annotations would have completely consumed the entire

length and budget of the grant—each document took two hours to annotate with the

CLEF entity guidelines. Additionally, requiring domain experts to make judgments

about semantic roles was not an efficient use of their expertise.

Eventually, it was decided that a new annotation model would be developed and

applied, one that adhered more closely to the goal of the corpus, and any semantic or

syntactic annotation that were required for NLP processing would be applied auto-
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matically with existing resources, or provided by annotators who were not bioclinical

domain experts (the second set of annotators could, of course, be linguistic experts).

7.2.4 Second Model – Light annotation

The light annotation specification that was developed for the PERMIT corpus used

only four tags: three extent tags used to identify sections of text relevant to each

criterion and to identify significant modifying phrases, and one linking tag used to

associate different extents, generally between criterion markers and their modifiers.

Non-consuming tags showed where annotators did not find mentions of any relevant

text for a particular eligibility criterion. The full DTD for this task can be found in

Appendix B.

Extent tags

The bulk of the annotation in the PERMIT corpus is contained in extent tags. There

are three types: selection criterion, matching criterion, and modifies.

The selection criterion and matching criterion tags were used to mark text

that was relevant to the criteria outlined in Section 7.1.1. The selection criterion

and matching criterion tags both have an attribute called “criterion”, which anno-

tators used to indicate which criterion the text they were marking was relevant to; for

example: ‘age’, ‘diabetic’, ‘recent card. event’, ‘no card. event’. Another attribute

was used to indicate whether the annotated text showed that the criterion was met

or not (or present or not, in the case of matching criteria).

The modifies tag was used to annotate context that would change the interpre-

tation of the criterion-related text. The use of this tag varied widely: in some cases
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it was used to mark dates related to time-dependent criteria, in others it was used

to indicate if the criterion-related text was about a family member rather than the

patient, or was in some way negated or theorized about (“may be at risk for...”).

Applications of this tag will be discussed further in Section 7.4.

Link tags

This annotation task uses only one link tag, called modifies, which is used to connect

text tagged as modifier to the criterion-related task it provided context for.

Non-consuming tags

Both the selection criterion and matching criterion tags have the option of

being “non-consuming”. For the purposes of this annotation task, a non-consuming

criterion tag is used to indicate that there was no text in the document related

to the indicated criterion. This annotation task makes the assumption that if a

disease or condition is not mentioned in a discharge summary, then the person in

question does not have that disease or condition. Therefore, if a discharge sum-

mary contains no mention of diabetes, then the annotator creates a non-consuming

selection criterion tag, sets the “criterion” attribute to “diabetic” and sets the

“meets” criterion to “DOES NOT MEET”. This way it is clear from the annotation

that the annotator found no mention of diabetes-related text in the document and is

making a positive claim that this person most likely does not have diabetes.
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7.2.5 Second Annotation

The two annotators were provided with the corpus of 100 documents, the DTD for

the case-control annotation task described above, a short set of annotation guidelines,

and MAE, the software for light annotation tasks described in Chapter 5.

The annotation guidelines as they were presented to the annotators are provided

in Appendix C; this section gives a brief overview of how the guidelines indicated the

tags in the specification were to be applied.

As training, each annotator was asked to annotated a sample set of documents

according to the new specification and guidelines, and were encouraged to ask ques-

tions about the annotation task. As a result of these questions some modifications and

clarifications were added to the annotation guidelines (these were technically a few

additional iterations of the MAMA cycle, though the specifics of what were changed

were minor and don’t need to be discussed), and once the annotators seemed to un-

derstand the task and the annotation, they were allowed to annotate the remainder

of the corpus.

Light Annotation Procedure

Essentially, the procedure outlined by the annotation guidelines was intended to im-

itate the actual process that would be used by a medical researcher when trying to

determine if a patient met a set of eligibility criteria: the annotators were asked to

read the entire document, and indicate what keywords stood out as being relevant

to the “study” being recruited for. When a set of relevant text was identified, it

was annotated as either selection criterion or matching criterion. Then the

annotator checked the document for nearby information that indicated whether this
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keyword is being used in a way that classifies the criterion as being met or not (for

selection criteria) or present or not (for matching criteria). Information used to de-

termine whether a keyword is related to a criterion was annotated as a “modifier”,

and linked to the related keyword with a “modifies” tag.

For example, if the matching criteria are related to whether a person has diabetes,

a mention of a person being admitted to the hospital because of diabetic shock will

be annotated as a positive indication that the patient is diabetic. However, if the

phrase “father w/ DMII” appears in the “Family History” section of the document,

then “DMII” will be annotated as a Selection criterion, but the “father” will be

marked as a modifier and linked to “DMII” and the “DMII” mention will be marked

as one that does not meet the requirements for selection criteria. The resulting

annotation will look something like this:

<Selection_criterion id="SC16" text="DMII"

criterion="diabetes" meets="NO"/>

<Modifier id="M2" text="father"/>

<Modifies id="ML26" from="M2" to="SC16"/>

This method of annotation lessens the work done by the domain experts—rather

than having to do a full linguistic annotation on top of the complex medical texts

they have to interpret, they were able to focus on their specialized knowledge, and

linguistic knowledge can be added later where needed.

Light annotation guidelines

In addition to the procedure outlined above, the annotators were asked to evaluate

each mention of relevant text separately from the rest: that is, each mention of

‘diabetes’ should be evaluated in the context of whether that particular instance
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indicated whether the criterion requiring a patient be diagnosed with diabetes was

met, not whether the document as a whole indicated that the patient had diabetes.

Annotators were also asked to use clues other than simple mentions of the dis-

ease names to determine if a patient had had a disease, but only if those clues were

unambiguous. For example, a blood test revealing that the patient had a high blood

sugar level may not specifically indicate that the patient has diabetes (they could

only be at risk, or something else could have affected the test), but a mention of

insulin being taken was unambiguous because no other disease uses insulin as a treat-

ment. The ‘unambiguous’ indication does not appear in the guidelines in Appendix

C, however; this was added during the phase where the annotators were testing their

understanding of the guidelines.

Finally, as described in the previous section, annotators were used to mark up

context that indicated whether a criterion was being met, such as temporal markers

or negations. However, this request did not include indicators such as document

section headers, as those were determined to be too numerous to annotate and they

slowed the annotation down too much.

7.3 Evaluation of the PERMIT corpus

As one of the primary concerns surrounding the abandonment of the CLEF annotation

specification was the length of time it would take to annotate the entire PERMIT

corpus, a key factor in evaluating the light annotation task is whether or not the

new specification helped solve this problem. In fact, the annotation process was

greatly sped up by the adoption of the light annotation task. While the CLEF Entity

annotation took the annotator roughly two hours per document, the criteria-specific
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annotation was done much faster, at an average rate of 3.72 documents per hour

(averaged across both annotators) (Stubbs, 2012).

As a consequence of saving time during the annotation of the PERMIT corpus,

money was also saved: based on the time each document took to annotate under

the CLEF Entity annotation, the actual cost of the light annotation was roughly

90% less than the projected cost of the CLEF annotation (ibid.). While the light

annotation method is not appropriate for all tasks (certainly the CLEF model does

serve a purpose in bioclinical annotation tasks), when it can be used it does provide

a reduction in both time and expense.

Because of the cost of hiring domain expert annotators, being able to reduce

the amount of time and money spent on annotations for a research project are an

important outcome of the light annotation task methodology. However, this is not the

only metric by which an annotated corpus is evaluated, and the rest of this chapter

examines the more standard conventions for evaluating an annotation task, such as

inter-annotator agreement and the results of the corpus adjudication.

In an annotation task, the inter-annotator agreement coefficient and precision and

recall scores of each annotator compared to the gold standard are used as indicators

for how clearly the task was defined, and how reproducible the results would be. High

scores indicate good levels of agreement and a more reproducible task.

7.3.1 Inter-annotator agreement scores

While in some areas of corpus linguistics it has become standard to measure inter-

annotator agreement (IAA) with Cohen’s kappa (Cohen, 1960) (or Fleiss’ kappa,

depending on the number of annotators (Fleiss, 1971)), these measures rely on being
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able to determine the number of true negatives found in the corpus, a metric that

can be difficult to quantify. Hripscak and Rothschild (2005) observed that “In text

markup studies, computer systems mark relevant phrases in documents. Negative

cases correspond to nonrelevant phrases. Their number is poorly defined because

phrases can overlap and vary in length”. An additional problem with kappa statistics

is that in cases where positive results are sparse, such as medical informatics, kappa

scores will be artificially lower even when the annotators agree, due to the large

number of negative responses (Hripcsak and Heitjan, 2002).

This same problem of data sparsity and high numbers of negative results applies to

evaluating the agreement between annotators in sparse annotations such as the PER-

MIT corpus. However, Hripcsak and Rothschild also determined that the unweighted

f-measure can be used to evaluate such instances. They note that if the number of

negative examples “...is at least known to be large, however, the probability of chance

agreement on positive cases approaches zero; [. . . ] k approaches the positive specific

agreement. Therefore, for experiments with large but unknown [true negatives], the

average positive specific agreement, which equals the average F-measure among the

raters, approaches the k that would be calculated if [the number of true negatives]

were known.”

Because the PERMIT corpus annotation is sparse, Cohen’s kappa will not provide

a true representation of the accuracy of the annotation process. While it might be

argued that the agreement could be evaluated based on whitespace-separated tokens,

because the different tags could be applied equally to whole phrases instead of single

tokens, this compromise would require that most tags be counted multiple times in

an evaluation, which will lead to inaccurate results.

The F-measure metric is the harmonic mean of the precision and recall of the
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documents being evaluated, as shown:

Precision =
true positives

true positives + false positives

Recall =
true positives

true positives + false negatives

Fmeasure(FB) =
(1 + B)(precision ∗ recall)

precision + recall

The B coefficient can be used to weight the equation to favor precision or recall,

but here there is no need to do so, and so 1 will be substituted for B in the equation,

making it:

Fmeasure(F ) =
(2)(precision ∗ recall)
precision + recall

By using one annotator as the ‘gold standard’ prior to the actual adjudication,

an f-measure can be calculated that reflects the IAA score of the annotation task.

Because the f-measure is the harmonic mean of the two scores, it does not matter

which annotator is used as the ‘gold standard’.

For Table 7.2, the inter-annotator agreement was calculated by using Annotator

2 as the gold standard. In cases where no true positives were found, the precision,

recall, and f-measure were counted as being 0. In some annotation tasks, this would

necessarily be an accurate portrayal of the state of agreement between the annotators

because it would be possible that the “gold standard” annotator simply did not use

the tag being evaluated, which could mean that agreement was perfect if the other

annotator also did not use the tag. However, because this annotation task required

that the annotators use every tag at least once, this scenario does not apply. While
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this could be interpreted as having the effect of artificially lowering the agreement

scores, it is preferable to artificially raising them by removing all those cases from

the analysis altogether. Scores were calculated by tag across all documents that both

annotators annotated (Annotator 1 was missing a document, and that one was left

out of the evaluation), and the table shows the average precision, recall, and f-measure

for each tag across all documents.

Prior to this analysis being done, some cleanup of the data was performed. First,

a Python script was run over the annotated files to remove whitespace from the

beginnings and ends of annotated extents, in order to more accurately assess strict

agreement of extent tags. Additionally, Annotator 2 misread the age restriction as “55

or over” rather than “under 55”, and so the “MEETS/DOES NOT MEET” attribute

for those tags were the opposite of what they were meant to be. As this was a simple

misreading with a binary interpretation, rather than ask the annotator to fix those

documents by had, a script was used to fix the error automatically.

strict overlap
prec. recall f-meas. prec. recall f-meas.

Selection criteria 0.531 0.592 0.541 0.617 0.68 0.626
age 0.516 0.864 0.635 0.523 0.871 0.642
diabetic 0.688 0.578 0.604 0.853 0.698 0.735
recent card. event 0.305 0.457 0.34 0.34 0.512 0.379
no card. event 0.48 0.468 0.47 0.48 0.468 0.47

Matching criteria 0.719 0.722 0.711 0.877 0.883 0.867
sex 0.44 0.445 0.439 0.91 0.917 0.893
race 0.897 0.904 0.897 0.897 0.904 0.897
recent lipid test 0.891 0.887 0.888 0.899 0.895 0.896
diabetic treatment 0.689 0.681 0.666 0.73 0.727 0.705
lipid medications 0.813 0.814 0.797 0.866 0.884 0.857

Modifier 0.182 0.265 0.204 0.246 0.376 0.279

Table 7.2: Precision, recall, and f-measure using Annotator 2 as the gold standard
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The agreement metrics were calculated twice: first using strict rules for counting

whether tags matched: a true positive was only found if both annotators had a tag of

the same type and attribute with the exact same start and end locations; and second

with relaxed rules for extent agreement, where a true positive was found so long as

the tag and attributes agreed and the annotators tags shared at least some characters

in common.

Unsurprisingly, agreement was much higher using the overlap metric. As the

annotation guidelines did not have strict rules about where the beginning and end of

a criterion tag should be located, the annotators used their judgment, which meant

that they used different rules for including determiners, possessives, and descriptive

phrases. However, the fact that they tended to agree on general location is a positive

result for a light annotation task.

The agreement scores are still a bit lower than might generally be expected for

what appears to be a relatively simple task. The reasons for this will become clearer

in the next section, where the creation of the gold standard is discussed, and an error

analysis of the entire dataset is performed, including an overview of the agreement

between the annotators and the adjudicated gold standard.

7.3.2 Adjudication of the gold standard and annotation error

analysis

The gold standard was created by adjudicating the annotations of the two annotators

using the software MAI described in Section 5.3. The adjudication was performed by

the author of this dissertation, in consultation with the annotators themselves and

the researchers at the Channing Lab.
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The adjudication process revealed the most common sources of error in the an-

notated documents, both in terms of problems with the guidelines that needed to be

reconciled, and problems with applying the annotation model to the documents. A

confusion matrix of the annotator’s tags is in Appendix D.

In addition to the tags described in Section 7.2.5, an additional tag was added to

the annotation, called Overall. This tag was used to indicate whether the patient

being described met each of the criteria individually, and whether they could therefore

be categorized as a case, control, or neither. See Appendix B for the DTD description

of the tag.

Cardiac events

One primary source of disagreement between the annotators was that they were not

using the same definition of “cardiac event”. Although “cardiac event” is a term that

is used in the medical community, its use varies depending on the context of its use,

such as the goal of the study being performed. As a result, there was some confusion

between annotators over whether the term’s use in the criteria should apply to only

medical events that were caused by something going wrong with the heart itself, or

if it should be taken to include events such as surgeries on the heart.

Because the case-control study was not intended to be used for actual medical

research, the determination on this point was somewhat arbitrary, as there was no

medical reason to use one definition over the other. Eventually it was decided that

only internal conditions (and therefore not surgeries or other external interventions)

would be considered “cardiac events”. While this rule was made clear to the anno-

tators during the annotation process, there was additional confusion as to whether

events that more indirectly affected the heart (such as arterial blockage) were con-
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sidered cardiac events; unfortunately, because the annotators worked independently

from each other and not at the same time, this discrepancy was not discovered until

adjudication began.

For the purposes of the adjudication, a list of qualifying cardiac events was com-

piled and used to determine which selection criteria tags would be used in the the

gold standard. Based on the advice of the consultants at the Channing Lab, the list of

accepted cardiac events included acute coronary syndrome, congestive heart failure,

coronary artery disease, heart attack, heart disease, heart failure, myocardial infarc-

tion and vessel disease; but it did not include events such as av block, cardiogenic

shock, chest pain/discomfort/tightness, heart block, pericardial effusion, pulmonary

edema or tamponade.

Because of the confusion over what constituted a cardiac event, the agreement

scores for both the ‘recent cardiac event’ and ‘no history of cardiac events’ was lower

than it might have been otherwise. However, this could easily be fixed in future

annotation projects by specifying qualifying events in the guidelines.

Modifier and modifies tags

Another source of low agreement scores was confusion over how large a span of text

should be annotated,and what should be considered a modifier. Given the string “type

II diabetes”, one annotator tended to annotate “diabetes” as a selection criterion and

“type II” as a modifier, while the other would label the longest string as a selection

criterion. The ‘longest string’ approach is what was used in the gold standard. This

aspect of the annotation/adjudication effort is discussed further in Section 7.4.
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Locating relevant extents

The biggest source of inter-annotator disagreement was not technically a disagree-

ment at all. In many cases, both annotators were, in fact, annotating the same types

of events and medications, but a large amount of time an extent that was correctly

annotated by one annotator was simply missed by another. The most likely cause

of this problem is that the discharge summaries in MIMIC are often quite long and

repetitive, and so it was easy to miss relevant data. Future annotation efforts would

likely benefit from splitting of the files into more manageable pieces. The gold stan-

dard version of the PERMIT corpus contains all the correct annotations from both

annotators. While a human would be able to tell from a single example if a cri-

terion was met, it was thought that a computer would need more input data than

a single mention per document, so the gold standard has “meets”/“does not meet”

annotations for all mentions of relevant terms in a document.

7.3.3 Annotator agreement with the gold standard

Once the gold standard was adjudicated, precision, recall, and f-measure were again

calculated, this time by comparing each annotator’s tags per file to the tags in the

corresponding gold standard file. Again, extent matches were calculated using both

strict and overlapping metrics. Table 7.3 shows the relationship between Annotator

1 and the gold standard annotations, and Table 7.4 shows the same statistics for

Annotator 2.

These tables clearly show just how large a problem the annotator’s missing relevant

extents was. With the exception of the modifier tag for Annotator 1, the precision,

recall, and f-measure scores were higher for both annotators across the board when
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strict overlap
prec. recall f-meas. prec. recall f-meas.

Selection criteria 0.697 0.664 0.661 0.764 0.727 0.725
age 0.941 0.92 0.916 0.948 0.927 0.923
diabetic 0.807 0.656 0.699 0.952 0.749 0.808
recent card. event 0.371 0.551 0.416 0.399 0.603 0.449
no card. event 0.52 0.443 0.456 0.52 0.443 0.456

Matching criteria 0.956 0.878 0.91 0.974 0.897 0.929
sex 0.93 0.902 0.904 0.941 0.913 0.914
race 0.914 0.914 0.912 0.914 0.914 0.912
recent lipid test 0.921 0.915 0.918 0.927 0.921 0.924
diabetic treatment 0.902 0.806 0.839 0.926 0.83 0.862
lipid medications 0.931 0.902 0.903 0.926 0.902 0.902

Modifier 0.225 0.332 0.252 0.277 0.403 0.307

Table 7.3: Precision, recall, and f-measure between Annotator 1 and the adjudicated
gold standard

compared to the gold standard, as opposed to when they were compared to each other.

If one annotator had simply not followed the guidelines at all, that annotator’s scores

compared to the gold standard would be just as low as when compared to the other

annotator. However, we see that this is not the case, and the fact that precision tends

to be higher than recall backs up this assessment of the annotation task. Clearly,

the density and repetitiveness of the discharge summaries was a challenge for this

annotation task, though other domain expert tasks may not experience the same

difficulties with their annotation data.

Overall, the agreement even between the annotators and the gold standard is not

quite as high as it might be expected to be, but this case-control annotation task

provides an excellent source of data for evaluating the creation of light annotation

tasks. The next section provides an analysis of how the PERMIT corpus compares to

the stated principles for light annotations, and what lessons were learned from this
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strict overlap
prec. recall f-meas. prec. recall f-meas.

Selection criteria 0.938 0.806 0.863 0.967 0.843 0.896
age 0.96 0.599 0.726 0.96 0.599 0.726
diabetic 0.925 0.889 0.899 0.949 0.908 0.921
recent card. event 0.861 0.838 0.837 0.881 0.861 0.858
no card. event 0.833 0.789 0.802 0.858 0.804 0.82

Matching criteria 0.834 0.768 0.794 0.971 0.892 0.924
sex 0.506 0.493 0.497 0.948 0.92 0.924
race 0.965 0.958 0.958 0.965 0.958 0.958
recent lipid test 0.967 0.97 0.968 0.97 0.972 0.97
diabetic treatment 0.873 0.776 0.803 0.901 0.8 0.829
lipid medications 0.871 0.845 0.852 0.938 0.896 0.909

Modifier 0.605 0.622 0.596 0.657 0.668 0.643

Table 7.4: Precision, recall, and f-measure between Annotator 2 and the adjudicated
gold standard

annotation process.

7.4 PERMIT corpus as a light annotation task

The principles of light annotation presented in Section 4.3 were not fully formed prior

to this case study; rather, this case study helped refine the principles by highlighting

areas of the annotation task that had the most problems or resulted in the most

errors. The rest of this section examines the PERMIT annotation task in light of the

established principles.

The annotations are performed by experts in the field: Both of the annotators

had the experience to evaluate the documents presented; the third annotator (with

medical billing experience) had difficulty identifying relevant medications and other
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markers, and was therefore asked to not continue the annotation process after a few

documents.

Working with the annotator with medical billing experience made it clear that for

the given task, it was important that the annotators be able to understand the text

of the discharge summaries in a very complete way, as well as be able to recognize

what medications, test results, etc. were related to various conditions. However, this

should not be taken to mean that no medical coders are qualified to perform clinical

annotations; simply that any who do should have sufficient experience and confidence

to perform well at their task (something that should be true of any annotator).

The task is divided into as few classification questions as possible: This

principle was implemented when the task was re-defined as pertaining only to the cri-

teria established for the mock case-control study. Rather than perform an annotation

of all the medical events and related objects in the text, the annotation was limited

to extents directly pertaining to the established criteria.

The selection criteria and matching criteria were given separate tags, and each

of those tags had an attribute that indicated which criterion the associated extent

was referring to, and an attribute that indicated whether the extent suggested the

criterion was met or not.

The classifications used in the model are based on current best theories and

practices for the chose domain: The use of insulin as an unambiguous indicator

for diabetes was vetted by the collaborators at the Channing Laboratory. However,

as was discussed in Chapter 7.3.2, the definition of “cardiac event” proved much more

difficult to define without simply providing a list of qualified events.
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This principle was heavily influenced by the experience with the cardiac event cri-

teria. While any research project that is primarily medical research and secondarily

NLP research would presumably have the definitions of all the terms worked out well

before any annotation task is undertaken, it is still vital that the medical priorities

and definitions be made clear to all the participants, and that medical expertise is

the deciding factor in these definitions.

Annotation should be done based only on what is in the text, not on

expert’s intuitions about the text: This principle was adhered to entirely: by

asking the annotators to indicate the areas of text that were relevant to the criteria (as

well as the areas that might appear to be positive indicators but were, in fact, not),

the annotation task was grounded in the existing text of the discharge summaries.

While annotators were encouraged to use medications as evidence of certain con-

ditions, this was only allowed when the medication use was unambiguous (such as

“insulin” as an indicator for diabetes) and still had extents in the text associated with

them. In addition, if the text contained no mention of anything that was relevant to a

criterion, the annotators were asked to use a non-consuming tag to indicate that lack

of evidence. This requirement, because it meant that the annotators were actively

making a claim about the document rather than simply not annotating anything,

helped ensure that they were more careful about checking the document for text re-

lated to each criterion.

If possible, the annotations should be applied to sentence- or phrase-level

sections of the document, in support of document-level classifications: In

retrospect, based on the error analysis in Section 7.3.2, the modifier extent tag and
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modifies link tag should not have been included in the annotation task. Instead,

annotators should have simply annotated the entire relevant phrase or sentence, with-

out trying to break up the phrase into constituent parts. While annotating an entire

extent may have ended up including information that was not relevant to the stated

criteria, that information could have been weeded out later in the MATTER cycle

when a fuller Model was being constructed. As it stands, the modifier tag was the

source of the greatest amount of disagreement and confusion for the annotators. Fu-

ture light annotation tasks should more closely adhere to the principle of sentence-

or phrase-level annotations.

Additional layers of annotation can be provided before or after the light

annotation is performed without conflicting with the given classifications:

Because the annotation environment generated stand-off annotation based on char-

acter offset, the final version of the annotations are fully augmentable with other

annotation layers and information. As will be shown in Chapter 8, this makes lever-

aging the expert annotations into an NLP system much easier.

7.5 Summary

The case-control annotation performed over the PERMIT corpus provided an excel-

lent way to test and refine the principles of light annotation tasks. While not all

the principles were strictly adhered to, due to the fact that they were still being

determined at the time the corpus was annotated, the PERMIT corpus is a good

example of a light annotation task, and examining the places where the case-control

annotation was less than ideal reveals the motivations behind the principles of light

129



CHAPTER 7. DOMAIN EXPERT ANNOTATION

annotation tasks.

Even with some of the difficulties encountered with the PERMIT corpus annota-

tion, the use of a light annotation over the more semantically dense CLEF specifica-

tion led to a decrease in time and money spent on the annotation project, and these

aspects of research are always concerns when hiring consultants for professional-level

work. Additionally, the resulting annotation of the PERMIT corpus is sufficiently

grounded that it can easily be used for building and testing NLP systems, as will be

shown in the next chapter.
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Using Expert Annotation in an

NLP system

The purpose of light annotation tasks is to encode domain-specific knowledge in a way

that allows the expert-level understanding of the text to be used in other annotation

models and natural language processing systems. While the light annotation allows

the domain expert knowledge to be saved, it does not provide a complete annotation

of all the aspects of the text that would be used for a machine learning or rule-based

NLP system. However, the principles underlying the light annotation provide insight

into the aspects of the text that can be turned into features, and the format allows

the annotated gold corpus to be augmented with other annotated data, either by

hand or by machine.

This chapter examines how the light annotation of the PERMIT corpus can be

used to set the foundation of a system designed to mimic the process of finding

patients who meet the eligibility criteria. The system described here does not provide

a start-to-finish process for fully automating the patient selection process; rather, it
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contains some preliminary research into using the domain expert knowledge encoded

by the light annotation task.

Section 8.1 examines the distribution of data in the PERMIT corpus, in terms of

the number patients who meet each criterion, the number of cases and controls, and

how many times each tag was used. Section 8.2 uses the corpus to test and train

machine learning algorithms in order to set a baseline for evaluation of the corpus

in an NLP system. Section 8.3 demonstrates the use of domain-expert identified

keywords for recognizing met criteria, and Section 8.4 augments the keyword-based

system with some course information about the document structure of the discharge

summaries. The remainder of the chapter looks at some of the different ways the

PERMIT corpus could be tested using other, existing NLP systems for clinical texts.

The work in this chapter focuses primarily on the selection criteria rather than

the matching criteria; the techniques for leveraging the two types of tags would be

largely the same, so discussion is focused on the selection criteria in order to keep the

chapter narrative focused on the strategies used for assessing and leveraging the light

annotation.

8.1 Data distribution in the PERMIT corpus

In order to fully utilize the domain expert annotation, it is important to have an

understanding of how the annotations are distributed in the corpus, and to look

for trends in the annotated texts and patient diagnoses. This section examines the

distribution of cases and controls in the PERMIT corpus, as well as provides analysis

of the use of the different tags for each of the selection criteria.
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8.1.1 Cases and Controls

The motivation for the PERMIT corpus was to mimic the circumstances of a mock

retrospective case-control study by generating selection and matching criteria and

asking domain experts to create annotations based on the goals of the mock medical

study. For the purposes of the PERMIT corpus, a ‘case’ is someone who meets the

following criteria: is under 55 years old at the time of hospital admission, is diagnosed

with diabetes, and has had a cardiac event within two years of the date of hospital

admission. A ‘control’ in the corpus must also meet the age and diabetic criteria, but

have no history of cardiac events. While these criteria are relatively simple compared

to some of the more complex criteria used for more ambitious medical studies, the

methodology of the light annotation should easily scale to criteria requiring more

detailed patient evaluation.

Based on these definitions, the PERMIT corpus contains 5 cases and 5 controls,

out of the full set of 100 patient records, despite many of the files having been chosen

based on their containing keywords relevant to the study criteria (c.f. Section 7.1.2).

The other 90 files met either none or only one or two of the stated criteria, and

were therefore neither cases nor controls; the distribution of individual criteria in the

corpus will be examined later in this chapter. The rest of this section investigates

how the selected documents broke down into files that met the different case/control

criteria.

Nine of the ten files in the set of cases and controls came from the documents

that were added to the corpus because they contained one of the keywords that was

being selected for. Table 8.1 shows how many files from each keyword selection met

the case or control criteria.
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keyword (total documents set) cases controls
“diabetes” (16) 3 3
“DMII” (8) 0 0
“heart attack” (9) 0 0
“insulin” (14) 0 2
“LDL” (7) 0 0
“myocardial infarction” (16) 1 0
randomly selected (16) 0 0
initial document set (14) 1 0

Table 8.1: Relationship between initial corpus selection and case/control group mem-
bership

Table 8.1 does indicate that the “diabetes” keyword did comparatively well as

a selector for relevant discharge summaries, though it does not tell the whole story

about what keywords were contained in the qualifying files. Table 8.2 shows the

relationship between the keywords used to selected files to be part of the corpus, and

how many of the cases and controls contained each of those keywords, regardless of

why each file was included in the PERMIT dataset.

keyword cases controls
diabetes 5 5
DMII 1 0
heart attack 0 0
insulin 4 5
LDL 0 0
myocardial infarction 3 0

Table 8.2: Presence of keywords in the case and control groups

There does appear to be a strong correlation between some of the keywords and

whether the files meet the selection criteria, with all 5 cases and controls containing

the word ‘diabetes’ and 3 of the 5 cases containing ‘myocardial infarction’. However,

further inspection of the files in the full corpus reveals that 20 documents in the
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corpus contain both “diabetes” and “myocardial infarction”, and only three of those

files qualified as cases.

Narrowing down the field of potential candidates through keywords is clearly help-

ful, but it is also clear that keywords alone will not suffice to accurately select patients

who qualify for studies. In particular, finding patients who meet all the criteria for

the control group would be difficult in this scenario, as the controls were identified

by their lack of cardiac events.

While the stated goal of the study is to identify cases and controls from the patient

population, focusing on the ‘case’ and ‘control’ labels misses the underlying problem:

identifying patients who meet (or don’t meet) each of the individual criteria, then

looking at all the criteria at once to determine membership in the case or control

group. The next section examines the distribution of the different selection criteria

in the corpus.

8.1.2 Distribution of selection criterion tags

In order to begin making suggestions about how to leverage the expert annotations

in order to help find patients who meet each of the individual criteria, it is helpful to

understand the distribution of which criteria were met or not met in the PERMIT

corpus. Table 8.3 shows the number of files that meet each criterion. At the criterion

level, files tended to not meet the age or cardiac event-related criteria (both having a

recent cardiac event and having no history of such events), but the patients did tend

to be diabetic.

This trend is particularly interesting, because while 38 of the files in the PERMIT

corpus were included for diabetes-related keywords (“diabetes”, “DMII”, “insulin”),
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Criterion file count
Age

Meets 32
Does not meet 68

Diabetic
Meets 60
Does not meet 40

Recent cardiac event
Meets 38
Does not meet 62

No history of cardiac events
Meets 33
Does not meet 67

Table 8.3: Distribution of met criteria

12 additional files met that criteria from the other file-inclusion groups. Similarly,

though 25 files were included for containing cardiac-event related terms (“heart at-

tack” and “myocardial infarction”), an additional 13 files met the recent cardiac event

criterion.

The individual meets/does not meet attributes on the tags themselves roughly fol-

lowed the distribution of those attributes over the files, as shown in Table 8.4. Again,

tags skewed towards meeting the diabetic criterion, and not meeting the criterion of

not having a previous cardiac event. Whether nor not a cardiac event occurred with-

ing the past 2 years was often difficult to determine based on the given text, making

the “recent cardiac event” criterion less heavily biased. The age restriction is often

not met, likely because diabetes and cardiac events tend to affect people over 55,

rather than under. On average, there were 123 selection tags per discharge summary.
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tag tag count
Age

Meets 84
Does not meet 162

Diabetic
Meets 363
Does not meet 66

Recent cardiac event
Meets 137
Does not meet 130

No history of cardiac event
Meets 43
Does not meet 250

Total tags 1235

Table 8.4: Distribution of Selection Criterion tags and attributes in corpus

8.2 Establishing a baseline accuracy with ML clas-

sifiers

The use of machine learning (ML) algorithms for all types of NLP tasks, not only

those in the bioclinical domain, is an area of research that has been expanding rapidly

for years. For this dissertation, a series of ML classifiers from both the NLTK (Nat-

ural Language Toolkit (Bird et al., 2009)) and WEKA (Waikato Environment for

Knowledge Analysis (Hall et al., 2009)) were used to establish a performance baseline

for accuracy of classifying the PERMIT corpus files.

Because there were so few cases and controls (five each) in the PERMIT corpus

for the selected criteria, the overall classification problem was instead divided into

four classifications problems: one for each of the selection criteria used for the mock

study.

As the purpose of this part of the experiment was to generate a representative
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baseline for accuracy, all types of classifiers were used to test this dataset, rather

than just one. The classifiers were each run 100 times using a random sampling cross-

validation methodology that selected 65 training documents and 35 testing documents

each time the classifier was run. The aggregate accuracy data for all of those runs is

shown in Table 8.5. Accuracy was calculated as percentage of documents that were

correctly labeled in each run.

NLTK WEKA
Criterion (# tags

met/not met)
Näıve
Bayes

Dec.
Tree

Max.
Ent.

Dec.
Tree

(C4.5)

Näıve
Bayes

Ripper SVM

Age (84/162)
Average 0.704 0.561 0.532 0.561 0.672 0.612 0.673

Min 0.486 0.343 0.171 0.4 0.429 0.343 0.514
Max 0.857 0.771 0.829 0.771 0.829 0.829 0.829
Med 0.686 0.571 0.6 0.571 0.686 0.6 0.657

Diabetes (363/66)
Average 0.655 0.687 0.531 0.683 0.663 0.725 0.696

Min 0.486 0.371 0.286 0.343 0.457 0.457 0.514
Max 0.829 0.857 0.743 0.829 0.857 0.886 0.857
Med 0.657 0.714 0.543 0.714 0.657 0.743 0.686

Rec. Card.
(137/130)

Average 0.689 0.608 0.519 0.621 0.679 0.627 0.701
Min 0.514 0.343 0.257 0.429 0.457 0.4 0.571
Max 0.829 0.771 0.8 0.8 0.829 0.829 0.857
Med 0.686 0.629 0.543 0.629 0.686 0.629 0.714

No Card.
(43/250)

Average 0.739 0.643 0.531 0.617 0.745 0.72 0.748
Min 0.543 0.486 0.2 0.371 0.6 0.514 0.543
Max 0.971 0.8 0.829 0.857 0.886 0.914 0.914
Med 0.743 0.657 0.6 0.629 0.743 0.743 0.771

Table 8.5: Baseline machine learning classification accuracy values per selection cri-
terion
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For features, the classifiers were given the label that indicated whether or not each

criterion was met and the “bag of words” in each document. The classifiers performed

fairly well, though the rest of the chapter will provide suggestions and methods for

improving these scores, primarily using rule-based analysis. It should be noted that

the accuracies reported here are percentage accuracies (number correct divided by

total number), not precision, recall, or f-measure.

8.3 Keyword-based selection

When attempting to leverage the domain expert annotations, one of the first aspects

of the corpus that should be examined are the words and phrases that were marked

by the annotators, and how often those text extents appear in the entire corpus.

Some preliminary phrase analysis was done in Section 8.1, but that was done based

on prospective keywords: this section examines the extents that were actually marked

as relevant to the goals of the corpus as part of the annotation task.

Appendix E shows the extents that the annotators used for each of the selection

criterion1. These tables provide an overview of all the phrases used to mark whether

a criterion was met or not met, and they are ordered by the frequency that each

phrase appears in the annotated corpus for each criterion.

For the most part, the basic terms that are annotated for each of the criteria are in

line with what might be expected if a medical dictionary was used, the annotations do

reveal some surprising results. For example, there is a much wider range of phrases

1The extents labeled for the “age under 55 at time of admission” criterion are not included, as
those extents are simply a list of dates of birth and phrases such as “44 year old”, which did not
add useful information to the analysis process.
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used to indicate diabetes than is found in the SNOMED-CT browser2. While a

SNOMED-CT search for “diabetes mellitus” returns a set of terms and child terms

that do reflect some of what the expert annotators marked up in the PERMIT corpus,

variations such as “dmii”, “t2dm”, “iddm” and similar variations which would likely

need to be added manually to any system built to identify patients with diabetes.

The annotators also indicated insulin (and brand-names for insulin) as an indicator

of diabetes, another set of diabetes-indicators that would need to be built into an

NLP system.

While there is much more variation in the lists of phrases that met the recent

cardiac event criterion, the overall theme of the annotations is much the same. Many

of the annotated phrases do appear in SNOMED-CT, but many of the annotated

variations do not. For example, a search for “myocardial infarction” does reveal

“heart attack” and “Myocardial infarct” as variations of the term, it does not list

“non-st elevation myocardial infarction” as a related term, let alone the abbreviation

“nstemi”. While these phrases do appear further down the concept tree in SNOMED-

CT from the higher-level term “myocardial infarction”, an annotator who is not an

expert in the domain would not know at what point the relationship between “cardiac

event” and the conceptual children of “myocardial infarction” might stop, which

necessitates the inclusion of domain professionals in the annotation task.

8.3.1 Using keywords with the PERMIT corpus

Despite the small variations in the annotations that were created for each criterion,

a core list of relevant phrases can be used to help identify documents that fall into

2https://uts.nlm.nih.gov/snomedctBrowser.html, accessed July 19, 2012
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the “meets” and “does not meet” category for each criterion.

One of the most obvious trends that can be gleaned from the annotations in

Appendix E is that for the diabetes and recent cardiac event criteria, positive instances

of a disease (that is, instances where the person meets the criterion being examined)

generally don’t have modifiers, while those that do not meet the criterion do. This

trend is reversed with the criterion pertaining to not having a history of cardiac events.

Additionally, documents that do not meet a criterion often have no text related to

that criterion, a fact that is relayed by the number of times a non-consuming tag was

used to indicate that a criterion was not met.

The rule that, generally, a criterion is met if there is a related phrase but not

met if there is no relevant text can easily be applied to each of the diagnosis-related

criteria. For each criterion a list of relevant phrases was created, based on the anno-

tated extents in the gold standard corpus. Each text file was searched for the list of

keywords, and classified as “meets” or “does not meet” based on the rules outlined

above. The results of this rule and keyword combination are discussed below.

Diabetes: The list of diabetes-related keywords generated from the gold standard

as as follows: diabetes, diabetic, dm, dm1, dm2, dmi, dmii, t2dm, iddm, glargine,

humalog, glyburide, metformin, lantus, glucophage. A Python script to perform a

regular expression search, looking for places where these expressions appear only as

stand-alone tokens (so ‘dm’ will not count if it is part of another word) and ignoring

the case of the expressions searched. Files that contained any of the diabetes-related

words were counted as meeting the criterion, and those that did not include any

diabetes-related words were counted as not meeting the criterion. The lists of files

were then compared to the list of files from the gold standard that were classified as
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meeting and not meeting the diabetes criterion. The results for this test are shown

in Table 8.6.

gold standard/script true pos. false pos. false neg.
Meets 60/69 59 10 1
Does not meet 40/31 30 1 10

Table 8.6: Keyword-based ‘diabetes’ classifications compared to gold standard

While there was a tendency for this method to over-label patients as meeting the

diabetes criterion, the overall accuracy for the ‘diabetes’ criterion is .89, a number

that compares favorably to the classifier results shown in Table 8.5, where the av-

erage accuracy across all the classifiers for the diabetes criterion was .663, and the

best-performing classifier had an average accuracy of .696.

Recent cardiac event: Similar to the ‘diabetes’ criterion, a determination for the

‘recent cardiac event’ criterion was also based on whether or not a file contained any of

a list of cardiac event-related keywords: stemi, myocardial infarction, congestive heart

failure, chf, nstemi, mi, coronary artery disease, artery disease, cad, heart attack, imi,

heart failure, vessel disease. The results of this keyword and rule-based classification

are shown in Table 8.7.

gold standard/script true pos. false pos. false neg.
Meets 38/78 38 40 0
Does not meet 62/22 22 0 40

Table 8.7: Keyword-based ‘recent cardiac event’ classifications compared to gold stan-
dard

Similar to the ‘diabetes’ criterion, there was a tendency here for files to be over-

classified as meeting the criterion compared to not meeting it. Overall accuracy for
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the ‘recent cardiac event’ criterion using this method is .60. This compares well to

the classifiers, which overall performed slightly better, with an average accuracy of

0.635 and the highest-performing classifier obtaining an average accuracy of .701.

No history of cardiac events: This criterion used the same keyword list as the ‘re-

cent cardiac event’ criterion, but the rule used for classifying documents was flipped:

if a document contained one of the keywords, it was put into the ‘does not meet’

category, and if it did not contain any of the keywords it was classified as ’meets’.

The results of this system are shown in Table 8.8.

gold standard/script true pos. false pos. false neg.
Meets 33/22 20 2 13
Does not meet 67/78 65 13 2

Table 8.8: Keyword-based ‘no history of cardiac event’ classifications compared to
gold standard

This method obtained an overall accuracy of .85, which is significantly better than

both the classifiers’ average performance of .678, and the highest-performing classi-

fier’s average of .748.

Overall, simply checking for keywords found in the annotations provided fairly

good results for an initial attempt at document classification according to each di-

agnostic criterion. Two of the three criteria out-performed the baseline performance

metric created by the classifier systems, and the third was not far off from matching

the classifiers’ average performance.

Naturally, these performance results cannot necessarily be extrapolated to new

sets of documents, but the purpose of this chapter is to explore some of the ways
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that light annotations tasks can be leveraged into NLP systems for processing clinical

data, not to build a fully-functioning system for identifying patients with particular

diagnoses.

8.4 Using document structure for analyzing the

PERMIT corpus

In order to further improve the results of the test-system that was discussed in the

previous system, the next step was to examine the modifiers that the gold standard

identifies as being important for correctly interpreting the documents.

In many cases, these modifiers are used to indicate that the document is describing

the patient’s family or medical history, rather than current events. Section 6.3.3

discussed how patient discharge summaries often use section headers to distinguish

different parts of the patient’s medical record, including identifying sections about

the patient’s history and his or her family’s medical history as well. By determining

what section of the document an identified keyword is in, it may be possible to further

improve the accuracy of the keyword-based system without resorting to fully syntactic

and/or dependency parsing.

8.4.1 Section headers and narrative containers

Using section headers as a way to gather more information about a clinical text

has been proven an effective method of analyzing clinical documents (Mowery et al.,

2009), and the SecTag system was built to utilize this type of information (Denny et

al., 2008). While the SecTag system is not freely available, the database of section
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headers and relational concepts can be downloaded from Vanderbilt University3.

The SecTag database and ontology provides an excellent resource for identifying

section headers and classifying them into types, but the database does not include

information most relevant to the modifiers that were annotated in the PERMIT

corpus, such as whether or not each of the section headers refers to the patient, and

when the events described in that section likely took place.

The idea of determining when an event was likely to have taken place comes from

recent research into the TimeBank corpus examining temporal constraints on events.

Recent analysis of news texts suggests that temporal constraints on reported-on events

may be inferred by their source and are inherently understood by readers (Pustejovsky

and Stubbs, 2011). This constraint, called a “narrative container”, supplies temporal

structure to news reports by limiting the time frame in which an unanchored event

(that is, an event mentioned in the past tense without any temporal modifiers) can

take place.

For example, an article from a daily newspaper that simply reports “The White

House said...” without indicating when the ‘said’ even took place will still be in-

terpreted by most readers as having taken place within the past day, due to the

assumptions that can be made about the time frame in which an article for such a

publication is written. The one-day windows is the narrative container, which pro-

vides constraints regarding when an event can be assumed to have taken place. The

left-most constraint (the one farthest in the past) in this example is 24 hours be-

fore the news story was published, and the right-most constraint (the one closest to

the time the article is being read) is the time just prior to the publication of the

3http://knowledgemap.mc.vanderbilt.edu/research/content/

sectag-tagging-clinical-note-section-headers
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newspaper.

This concept of “narrative containers” can be applied in a general way to the

section headers in discharge summaries in order to help determine when the discussed

events (including diagnoses) are most likely to have taken place.

The SecTag database does not inherently contain information about section head-

ers, or whether each section pertains to the patient, his or her family, or some other

aspect of a discharge summary such as hospital-related metadata (for example, the

attending physician or room number). The addition of this information to the SecTag

database is described in the next section.

Augmentations to the SecTag database

In order to take advantage of the information in section headers with regards to

narrative containers and subject, the SecTag database needed to be augmented with

some additional information about the section headers it contained. This was done

by creating an additional table with information about the top-level concepts in the

SecTag ontology.

Specifically, each of the section headers was given one of three labels that de-

scribed its type/function in the document. These three labels were:

Metadata - This is information that is important to understanding the record, such

as the admission date, discharge date, and the patient’s date of birth, as well as infor-

mation that is meant for the hospital but is not important for this annotation task,

such as the names of the doctors, who created the file, etc.

Document Substructure Component - These provide context for what the fol-
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lowing block of text refers to in the discharge summary. These are phrases such as

“Allergies”, “Past Medical History”, “Discharge Disposition”, etc. The substructure

components are especially important because they often provide temporal context,

and are the most directly relevant to the PERMIT corpus.

Component Topics - these are sections within the Substructure Components that

provide topical information. For example, in the Substructure Component “Hospital

Course”, the description of actions may be divided by each medical problem that was

addressed while the patient was in the hospital, such as “Diabetes”, “Cardio”, etc.

Knowing the general topic of the text segment can be useful when trying to disam-

biguate an abbreviation, though this information is generally more detailed than the

PERMIT corpus currently requires.

In addition to the labels describing the function of the section header data in

the document, each top-level concept was assigned given an “about” marker, used

to indicate whether the information referred to the hospital, patient, family, or some

combination of those, as well as the likely start and end date for that concept’s nar-

rative container. The narrative container start and end times were generally limited

to fairly broad times, such as the patient’s date of birth, the hospital admission date,

and the hospital discharge date. It should be noted that these additions to the SecTag

database are meant to represent a quick, general way to garner additional information

from identified section headers.
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8.4.2 Results of keywords + section header processing

Making use of the section header terminology was done in a two-step process. First,

potential section headers in each file were identified with a regular expression search.

Each identified segment was then matched against the SecTag database to see if a

match could be found so that the identified string could be connected to a top-level

concept and provided with the extra information, including level, narrative container

information, and who the section was most likely about.

Once the section headers in each document were identified, the text of the docu-

ments was searched for the keywords identified in the previous section. If a keyword

was found, the document was checked to see what type of section it was in, and

whether the topic was the patient or his or her family, as well as whether the narra-

tive container might have information relevant to the criterion being examined. The

results of this experiment per criterion are described below.

Diabetes: When augmenting the keyword list with section header information for

this criterion, only the header information that determined if the section was about

the patient was used. Narrative container information was not relevant, as diabetes

is generally an ongoing state. The results for this analysis are shown in Table 8.9.

gold standard/script true pos. false pos. false neg.
Meets 60/65 59 6 1
Does not meet 40/35 34 1 6

Table 8.9: Keyword- and section-based ‘diabetes’ classifications compared to gold
standard

The accuracy for this criterion increased from .89 to .93, a moderate improvement

for performance here, but still significantly better than the classifier baseline shown
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in Table 8.5.

Recent cardiac event: Because this criterion has a temporal component, header

information about whether the section pertained to the patient was used in the anal-

ysis, as well as information about the narrative container. Patients were only placed

in the “meets” category if the section a match was found in had a narrative container

start time of the hospital admission date. Table 8.10 shows the results of this analysis.

gold standard/script true pos. false pos. false neg.
Meets 38/53 32 21 6
Does not meet 62/47 41 6 21

Table 8.10: Keyword-based ‘recent cardiac event’ classifications compared to gold
standard

Accurate classifications using this method rose to .73, a significant increase from

the keyword-only score of .60, which also raises the accuracy higher than both the

average classifier score (0.635) and the highest-performing classifier (.701).

No history of cardiac events: Like the ‘diabetes’ criterion, this criterion was

evaluated using only the header information that determined whether the relevant

section was about the patient. As any cardiac event that the patient experience

would remove them from meeting this criteria, no matter when it occurred, narrative

container information was not a relevant factor in this analysis. Table 8.11 shows the

results of adding header information to the ‘no history’ criterion.

This method obtained an overall accuracy of .89–not a large increase from using

only keywords (.85), but still much better than both the classifiers’ average perfor-

mance of .678, and the highest-performing classifier’s average of .748.
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gold standard/script true pos. false pos. false neg.
Meets 33/28 25 3 8
Does not meet 67/72 64 8 3

Table 8.11: Keyword-based ‘no history of cardiac event’ classifications compared to
gold standard

8.5 Additional analyses

At this point in the processing of the PERMIT corpus, it would be necessary to

augment the light annotations with more detailed or deep annotations, such as syn-

tactic parsing, dependency trees, temporal processing, etc. Appendix G provides an

overview of some of the existing systems used for analyzing clinical and temporal

data. While some of these systems are not available for public use, they provide

insight into the types of analysis that could be done on the PERMIT corpus.

Based on the modifiers used in the light annotation, the next steps for an NLP

system based on the PERMIT corpus would be to address the contextual negations

(“ruled out for”) and the time-sensitive aspects of the cardiac event criteria. Systems

such as cTAKES (Savova et al., 2010), ConText (Chapman et al., 2007; Harkema

et al., 2009), the TARSQI Tool Kit(Verhagen and Pustejovsky, 2008; Verhagen and

Pustejovsky, 2012), and TimeText (Zhou et al., 2007) would be the most likely can-

didates to be brought into an NLP system for the corpus being analyzed here, but

this dissertation does not seek to build an entire automated analysis system around

the light case-control annotation task.
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8.6 Summary

This chapter provides an introductory approach to ways that a light annotation can

be leveraged in an NLP system by using keywords and document structure as star-

ing points for analysis, and discusses how further analysis could be done by taking

advantage of existing systems, even without acquiring a deeper annotation.

The light annotation for the case-control ‘study’ provided a platform from which

the clinical documents could be analyzed and evaluated, and that it also encoded

information about relevant phrases that may not have been identified if the annotators

had not been domain experts and had instead relied on medical dictionaries such as

SNOMED-CT. While this dissertation does not seek to build a full NLP system that

would mimic the results of the annotation task, the foundation for such a system are

embedded in the light annotation model.
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Conclusions and Future Work

9.1 Conclusions

This dissertation examines the problem of capturing professional (specifically, non-

linguistic) knowledge in annotated corpora, and proposes a solution to this problem

in the form of light annotation tasks : linguistically under-specified, task- and domain-

specific annotation models that can be used to quickly capture expert knowledge in

a corpus as it relates to a research question. The resulting annotation is one that can

become a layer in a more detailed annotation model, or directly into an NLP system.

The findings and contributions of this dissertation are summarized below.

Evaluation of established standards: A thorough overview of the established

standards and general desiderata for annotation tasks, as they have been described in

the corpus and computational linguistic communities is provided in this dissertation.

Chapter 2 examines these standards, which include corpus selection, representation

of annotated data, annotation guidelines, reporting on annotation tasks, and require-
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ments for annotation software. Chapter 3 describes the MATTER cycle, the first

general methodology for all types of annotation and machine learning tasks. By

pulling together the disparate desiderata of the different factors that influence anno-

tation tasks, this dissertation not only builds a solid base on which to ground light

annotation tasks, but also produces a resource that other researchers involved in com-

putational linguistics may find valuable when designing their own annotation tasks.

Definition and principles of light annotation: Representing domain expert

knowledge in an annotation task for later use in an NLP system is a difficult task,

due to the different research interests and styles of, for example, medical doctors and

computational linguistics. While the concept of a light annotation task is not new,

this dissertation provides the first definition of what a light annotation task is, and

how such a task fits into the established annotation standards. Additionally, until this

dissertation no research had been done into what makes a good light annotation task,

particularly with regards to domain-specific research. Chapter 4 provides a thorough

analysis of light, domain expert annotations that have been performed in the past,

and uses that information to establish a set of principles that can be used to create

effective light annotation tasks.

Software for light annotation: Because light annotation tasks are designed to be

performed by domain experts rather than linguistic researchers, it is important that

the annotation environment be easy to install, set up, and use. In order to provide

such an environment for domain experts, this dissertation also presents MAE and

MAI, annotation and adjudication software designed for light annotation tasks. This

software, described in Chapter 5, was not only used in the light annotation case study
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presented in Part II of this dissertation, it has also been used by other annotation

tasks (not all of them light), including spatial and temporal annotations, and anno-

tations in a variety of other languages.

A case study for clinical light annotation: Part II of this dissertation presents

a case study examining how the light annotation methodology and principles were

applied to the clinical domain in the form of a mock retrospective case-control study.

The resulting annotation, in the form of the PERMIT corpus, was both easier and

faster to create than other, more fully specified annotations that have been performed

over clinical data. Additionally, the light annotation provided a solid basis for pre-

liminary experiments in automating the selection of patients for the mock study.

In sum, this dissertation establishes a standard for the newly-defined light annota-

tion task, which is grounded on established standards in the corpus and computational

linguistic communities. In addition to providing software that is designed for use with

light annotation tasks, this dissertation also describes and analyzes a case study that

applies the concept of light annotation to the clinical domain, and shows preliminary

research into leveraging that annotation into an NLP system.

9.2 Future Work

The light annotation methodology provides many different areas in which further re-

search can be done. Some of these research areas are described in this section.

Application to other annotation approaches: Section 4.1 described some of
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the different approaches to bioclinical annotations that have been used for other an-

notation tasks. While some of these have already been incorporated into the light

annotation methodology (such as text-bound annotation (Kim et al., 2008)) others

have not. A light annotation task could, for example, be paired effectively with an

active learning (Settles, 2010) or accelerated annotation framework such as the one

used by Tsuruoka et al. (2008).

Application to other domains: The case study in this dissertation focuses on the

bioclinical domain, but the light annotation principles and methodology described

here could certainly be applied to any annotation task requiring domain expert knowl-

edge, such as evaluations of legal documents, math or computer science papers, and

so on. Future research regarding light annotation tasks should examine any factors

that might influence the creation of these tasks in other domains.

Application to other modalities: The research presented here focuses on text

annotation, but applying the light annotation principles to other modalities, such as

speech or video, could also provide an interesting platform for future research. Expert

analysis of games such as Go or chess, or even sporting events, could provide valu-

able insight to laypeople as to what makes good moves or plays, or what separates a

perfect gymnastic routine from one that is subtly flawed.

Further applications in bioclinical research: The PERMIT corpus annotation

task was designed around a retrospective case-control study, and used the finding of

qualified patients as a motivation for the annotation and preliminary NLP research.

While the main theoretical contribution of this dissertation is the description of the
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light annotation principles and methodology, the case study presented does provide a

potential avenue for the use of this methodology in actual clinical research. However,

the uses for light clinical annotations are not limited to retrospective case-control

studies, or even to patient selection in general. Other possible uses for light annota-

tion in the clinical domain should be explored.

More specific principles: The purpose of this dissertation was to provide a method-

ology and set of principles that could be applied to any type of light annotation task,

but research into whether more specific guidelines should be developed for different

domains, modalities, or research goals is another potentially useful avenue for future

research.

Addition of other annotation layers: While a defining principle of light annota-

tion tasks is that they can (and most likely will) be augmented with additional layers

of annotation, the specific process of turning the light annotation Model, M1 into

the full model ready for the MATTER cycle, M , can be further investigated. This

process was briefly discussed in Section 4.4, and Chapter 8 provides a beginning point

for how the process can be done. However, the particulars of how the M1 created for

a specific task and/or domain will affect the creation of a fuller M is an area that

should be explored in order to even more fully exploit the uses of light annotation

tasks.

This list of possible future research is not exhaustive, but it does show that there

is still more to be learned about the application of light annotation tasks, and how

they can be used in to aide research in a variety of different disciplines and modalities.

156



Part III

Appendices and References

157



Appendix A

Eligibility criteria analysis

This appendix provides an overview of temporal expressions in clinical trial eligibility

criteria, based on the trials listed on clinicaltrials.gov on October 5, 2010. Over-

all, there were 3,960 studies containing the terms “retrospective” or “case-control”

and 96,673 studies in total.

The ‘#’ in the left-most column stands for a match with a number, or any of these

words: a, an, the, one, two, three, four, five, many, few. The ‘ ’ represents hour,

day, week, month, year, with the frequency of each represented in that cell of the

table. The last cell of the table shows the frequency of words commonly associated

with temporal ordering.

The “Retrospective and case-control” column in the table is not meant to repre-

sent all retrospective and case-control studies in the clinicaltrials.gov database:

a full analysis of all 96,673 studies was not performed to determine which ones were, in

fact, retrospective and/or case-control studies. The column is present simply to pro-

vide some persepective on potential comparisons, not to make thuroughly researched

statements on disparities on study types.
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APPENDIX A. ELIGIBILITY CRITERIA ANALYSIS

Terms Retrospective and case-control All studies

within/for (the past) # 636 80,483

hour(s) 76 4,226

days(s) 141 27,145

week(s) 74 16,581

month(s) 245 24,849

year(s) 100 7,681

# ago/before 154 13,562

hour(s) 13 856

days(s) 21 4,231

weeks(s) 23 3,683

month(s) 52 3,704

year(s) 45 1,090

after # 22 558

hour(s) 4 47

day(s) 2 81

week(s) 7 213

month(s) 5 126

year(s) 4 91

# (any time) in the past 6 103

hour(s) 0 1

day(s) 1 29

week(s) 1 25

month(s) 4 44

year(s) 0 4

at least # 454 26,607

hour(s) 11 811

day(s) 23 3,070

week(s) 56 6,523

Continued on next page
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APPENDIX A. ELIGIBILITY CRITERIA ANALYSIS

Table A.1 – continued from previous page

Terms Retrospective/case-control All studies

month(s) 177 9,951

year(s) 187 6,252

between # and # 92 2,806

hour(s) 0 30

day(s) 2 80

week(s) 8 130

month(s) 1 67

year(s) 81 2,499

between # and # 7 177

hour(s) and hour(s) 0 4

hour(s) and day(s) 0 2

hour(s) and week(s)? 0 1

hour(s) and month(s) 0 3

hour(s) and year(s) 0 0

day(s) and day(s) 0 5

day(s) and week(s) 0 1

day(s) and month(s) 0 3

day(s) and year(s) 1 5

week(s) and week(s) 1 5

week(s) and month(s) 0 11

week(s) and year(s) 0 3

month(s) and month(s) 1 14

month(s) and year(s) 0 59

year(s) and year(s)? 4 54

other 0 6

# 4593 259,569

hour(s) 245 10,972

Continued on next page
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APPENDIX A. ELIGIBILITY CRITERIA ANALYSIS

Table A.1 – continued from previous page

Terms Retrospective/case-control All studies

day(s) 381 49,186

week(s) 489 52,939

month(s) 1094 73,306

year(s) 2384 73,165

previously 147 6,845

subsequently 10 225

after 473 24,036

before 359 19,899

history of 868 47,164
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Appendix B

Case-Control Annotation DTD

<!ENTITY name "CCml">

<!ELEMENT Selection_criteria ( #PCDATA ) >

<!ATTLIST Selection_criteria id ID prefix="SC" >

<!ATTLIST Selection_criteria start #IMPLIED >

<!ATTLIST Selection_criteria criterion

( age | diabetic | recent card. event |

no card. event ) >

<!ATTLIST Selection_criteria meets

( MEETS | DOES NOT MEET ) >

<!ATTLIST Selection_criteria comment CDATA >

<!ELEMENT Matching_criteria ( #PCDATA ) >

<!ATTLIST Matching_criteria id ID prefix="MC" >

<!ATTLIST Matching_criteria start #IMPLIED >
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APPENDIX B. CASE-CONTROL ANNOTATION DTD

<!ATTLIST Matching_criteria criterion

( sex | race | recent lipid test |

diabetic treatment | lipid medications ) >

<!ATTLIST Matching_criteria present

( PRESENT | NOT PRESENT ) >

<!ATTLIST Matching_criteria comment CDATA >

<!ELEMENT Modifier ( #PCDATA ) >

<!ATTLIST Modifier id ID prefix="M" >

<!ATTLIST Modifier comment CDATA >

<!ELEMENT Modifies #EMPTY >

<!ATTLIST Modifies id ID prefix = "ML" >

<!ATTLIST Modifies comment CDATA >

<!-- The Overall tag was used only during adjudication -->

<!ELEMENT Overall ( #PCDATA ) >

<!ATTLIST Overall start #IMPLIED >

<!ATTLIST Overall age ( MEETS | DOES NOT MEET ) >

<!ATTLIST Overall diabetic ( MEETS | DOES NOT MEET ) >

<!ATTLIST Overall recent_card ( MEETS | DOES NOT MEET ) >

<!ATTLIST Overall no_hist ( MEETS | DOES NOT MEET ) >

<!ATTLIST Overall determination ( CASE | CONTROL | NEITHER) >

<!ATTLIST Overall comment CDATA >
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Appendix C

Case-control Annotation

Guidelines

The guidelines provided below are the instructions that were given to the annotators

of the Case-Control annotation task. They were modified only for formatting to fit

into this dissertation.

C.1 Overview

Annotation for the case-control task (CCT) will be done in MAE. Before beginning

this task, please read the user guide included in the documents folder that MAE

comes with, and familiarize yourself with the controls. There is a sample annotation

task in the samples directory if you would like to experiment with that data first.

For the CCT, we will be examining two types of information: selection criteria,

and matching criteria. Selection criteria are used to determine if a person is eligible

for a study, and for this task are composed of the following:
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APPENDIX C. CASE-CONTROL ANNOTATION GUIDELINES

General criteria 1: must be under 55 years old at time of admission

General criteria 2: must have diabetes

Case criteria 1: must have had a cardiac event within 2 years of admission date

Control criteria 1: no history of cardiac events

The matching criteria are used to determine which patients share similar char-

acteristics in order to make data analysis as accurate as possible. For this task, the

matching criteria are:

Matching Criteria 1: race

Matching Criteria 2: sex

Matching Criteria 3: lipid measurement w/in 6 months of admission

Matching Criteria 4: information on diabetic treatment

Matching Criteria 5: lipid medications

In general, when selecting patients for eligibility in a study, it would be the case

that once a criterion is met, the person doing the assessing would move on to the

next one. However, the purpose of this task is to create a set of annotations that can

be used to determine which mentions of events, drugs, etc would indicate meeting a

criteria, and which mentions would not. Therefore, it is important that all mentions

of items that could be used to assess a criterion be annotated.

C.2 Annotation

We suggest that you go through each document at least twice using a keyword-based

strategy. For example, look for words that describe a cardiac event, and tag them
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APPENDIX C. CASE-CONTROL ANNOTATION GUIDELINES

as a selection criteria with type “recent cardiac event”. Then, check the context

around the words to determine whether this cardiac event meets the requirements for

inclusion in the study. Words providing context should be marked as “modifier”, and

linked to the text of the event with the “modifies” tag.

In most cases, modifiers will be words that indicate: whether or not an event

actually happened (ex: “admitted for” versus “ruled out for”); whether or not the

event happened to the patient (ex: if a criterion is mentioned in relation to a family

member); dates that indicate if the event happened within the timeframe (when there

is a timeframe specified).

Section headers should not be marked as modifiers, but any other information

should be annotated. Not all annotated extents will have modifiers.

C.2.1 Notes

� It is fine to extrapolate from the text whether a criterion is met or not. For

example, if it is not specifically mentioned that a patient has diabetes, but it

is mentioned that they are taking insulin daily, you can annotate the insulin as

both a selection criteria and a matching criteria.

� The ‘Meets’/‘does not meet’ (or ‘present’/‘not present’) attribute should be set

for each annotated extent based on the context for that event. Each extent

should be evaluated individually as to whether that particular mention meets

stated requirements. You are not, for this task, evaluating the person as a

whole.

� Please note that if a criterion is met by certain things not being mentioned

(for example, no history of cardiac events), then this should be annotated by
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APPENDIX C. CASE-CONTROL ANNOTATION GUIDELINES

creating a non-consuming tag and setting the appropriate “meets” or “does not

meet” flag. For each file there should be at least one tag per criteria. If a person

meets the criteria for having a recent cardiac event, then there should also be

a tag in their file showing that they do *not* meet the criteria for no cardiac

events. Non-consuing tags are created from the “NC elements” option in the

top menu bar of MAE.

� It is also possible to not meet either of the cardiac event criteria–for example,

if a person’s only cardiac event occurred over 2 years ago. In this case, the

cardiac event in question should be annotated along with the relevant date as

”does not meet”, and a non-consuming tag for ”no history of cardiac events”

should also be created and labeled as ”does not meet” as well.

� As previously mentioned, any information related to any of the criteria should

be annotated. However, for the matching criteria pertaining to sex, it is not

necessary to annotate every use of “he” or “she” to refer to the patient.
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Appendix D

Inter-annotator agreement table

Table D.2 is the confusion matrix for the PERMIT corpus annotation, which was

generated by checking each whitespace-separated token in the corpus against the

annotations of both annotators, and entering them into the table based on what tags

each annotator used for that token. Because many multi-word extents were annotated

by each annotator, most tags are counted more than once. This table is not used for

inter-annotator agreement calcuations (such as Cohen’s kappa), but it does provide

a general overview of what parts of the annotation the annotators were most likely

to disagree on. Table D.1 shows the abbreviations used for the tags in the confusion

matrix.
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APPENDIX D. INTER-ANNOTATOR AGREEMENT TABLE

Abbreviation tag and attribute
S c age Selection criteria: age
S c dia Selection criteria: diabetic
S c r c Selection criteria: recent cardiac event
S c n h Selection criteria: no history of cardiac events
M c sex Matching criteria: sex
M c race Matching criteria: race
M c l t Matching criteria: recent lipid test
M c d t Matching criteria: diabetic treatement
M c l m Matching criteria: lipid medications
Mod. Modifier
S c& Selection criteria (no criterion given)
M c& Macthing criteria (no criterion given)
None the annotator did not use a tag

Table D.1: Abbreviations for tag and attribute combinations used in the confusion
matrix table
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Appendix E

Selection criterion extent analysis

This appendix provides all of the extents that were included in the gold standard

of the PERMIT corpus selection criterion tag. The annotations for the age criteria

(being under 55 years old at the time of admission) are not included because they

were simply annotations of dates of birth and phrases such as “44 year old”, and

therefore do not need to be reproduced here.

For each table, the extents and any accompanying modifiers were all turned into

lower case, and are ordered based on how frequently they appeared in the gold stan-

dard. These tables give a complete overview of what phrases were identified as rele-

vant text for each criterion, as well as which modifiers were used to determine whether

a criterion was met or not met. Lines in each table that are blank represent the times

that no text in the document was related to a criterion, and therefore a non-consuming

tag was created to reflect that lack of relevant information.
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APPENDIX E. SELECTION CRITERION EXTENT ANALYSIS

Diabetes: meets Count

insulin 93

diabetes 31

dm 21

diabetes mellitus 21

glargine 14

humalog 13

dka 13

dmii 12

dm2 11

glyburide 10

diabetic 9

metformin 7

diabetic ketoacidosis 7

dm ii 6

type 2 diabetes mellitus 5

type ii diabetes mellitus 4

type 1 diabetes 4

glucotrol 4

type ii diabetes 3

t2dm 3

lispro 3

iddm 3

glipizide 3

dm type 1 3

diabetes mellitus type ii 3

type i diabetes mellitus 2

type 2 dm 2

type 1 dm 2

Continued on next page
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APPENDIX E. SELECTION CRITERION EXTENT ANALYSIS

Table E.1 – continued from previous page

Diabetes: meets Count

lantus 2

glucophage 2

dm type i 2

diabetic neuropathy 2

diabetes type 2 2

diabetes type 1 2

diabetes mellitus type 2 2

diabetes mellitus type ii 2

diabetes mellitus 2

type ii dm 1

type i dm 1

type i diabetic 1

type 2 diabetes 1

type ii diabetes mellitus 1

traglitazone 1

rosiglitazone 1

nph 1

non-insulin-dependent diabetes mellitus 1

non-insulin dependent diabetic 1

niddm 1

medical history + dm 1

insulin-dependent + insulin-dependent + diabetes mellitus 1

insulin-dependent + insulin-dependent + diabetes 1

insulin sliding scale 1

insulin lispro 1

insulin 1

humulin 1

Continued on next page

173



APPENDIX E. SELECTION CRITERION EXTENT ANALYSIS

Table E.1 – continued from previous page

Diabetes: meets Count

humilog 1

h/o + dm 1

glipizide 1

dm2 1

dm-ii 1

dm ii 1

diabetes, type ii 1

diabetes type ii 1

diabetes type i 1

diabetes type i 1

diabetes ketoacidosis 1

avandia 1

actos 1

insulin dependent diabetes mellitus 1

insulin 1

Table E.1: Modifiers and extents used to identify patients

who met the diabetes criterion
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APPENDIX E. SELECTION CRITERION EXTENT ANALYSIS

Diabetes: does not meet Count

38

mother + diabetes 3

mother + dm 2

diabetes mellitus 2

diabetes 2

specialists + diabetes 1

son and daughter have + dm 1

sisters + dm 1

relatives + not related to + diabetes 1

paternal + diabetes mellitus 1

no other hx + dm 1

no history of + diabetes mellitus 1

no h/o + dm 1

no history of + dm 1

grandmother + diabetes 1

gm + gm + type i diabetes 1

father + father w + dmii 1

family history of + diabetes 1

family history + diabetes 1

early signs of + early signs of + diabetes 1

determined not to be + diabetic 1

cousin + type ii dm 1

borderline + diabetes mellitus 1

at risk for developing + at risk for + diabetes 1

Table E.2: Modifiers and extents used to identify patients

who did not meet the diabetes criterion
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Recent cardiac event: meets Count

stemi 12

myocardial infarction 10

congestive heart failure 10

nstemi 7

mi 7

coronary artery disease 5

chf 5

heart attack 3

anterior myocardial infarction 3

single vessel coronary artery disease 2

one vessel coronary artery disease 2

nstemi 2

non st segment elevation myocardial infarction 2

found to have + 3 vd 2

3 vessel disease 2

this year + april of this year + myocardial infarction 1

status post + coronary artery disease 1

status post + anterior myocardial infarction 1

st-segment elevation myocardial infarction 1

st segment elevations myocardial infarction 1

st elevations myocardial infarction 1

st elevation myocardial infarction 1

st elevation inferior myocardial infarction 1

showed + 3 vessel coronary artery disease 1

should be repeated in 4 weeks post + mi 1

ruled out for mi + inferior mi 1

ruled in for + ruled in for + nstemi 1

ruled in for + myocardial infarction 1

Continued on next page
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Table E.3 – continued from previous page

Recent cardiac event: meets Count

ruled in + mi 1

revealed + three vessel coronary artery disease 1

revealed + single vessel disease 1

revealed + 3 vessel disease 1

presents with + stemi 1

premature coronary artery disease 1

one vessel non-flow limiting disease 1

non-stemi 1

non-st-elevation mi/cad/ 1

non-st elevation myocardial infarction 1

non st elevation myocardial infarction 1

non st elevation mi 1

most recent about 2 years ago + most recent about 2 years ago + mi 1

may result in another + heart attack 1

left heart failure 1

inferior mi 1

infarct 1

imi 1

heart failure 1

he was felt to be in + congestive heart failure 1

ekg changes consistent with + anteroseptal infarction 1

ekg and cardiac enzymes were consistent with + consistent with + imi 1

decompensated heart failure 1

coronary artery with diffuse disease 1

coronary artery disease 1

cad 1

apical infarction 1

Continued on next page
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Table E.3 – continued from previous page

Recent cardiac event: meets Count

anterior/ inferior mi 1

anterior st elevation myocardial infarction 1

admitted with + admitted with + imi 1

admitted to cardiology with + nstemi 1

2016-01-21 + coronary artery disease 1

2015-09-07 + two vessel disease 1

2015-08-21 + shortly after + nstemi 1

2015-05-26 + myocardial infarction 1

2015-05-26 + coronary artery disease 1

2015-05-26 + 2015-05-26 + myocardial infarction 1

2013-06-25 + cad 1

2012-07-06 + myocardial infarction 1

2012-07-06 + coronary artery disease 1

2012-05-06 + 2012-05-06 + myocardial infarction 1

2009-11-13 + st segment elevation myocardial infarction 1

2009-10-09 + nstemi 1

2005 + nstemi 1

12-01 + 2 vessel disease 1

08-22 + nstemi 1

07-29 + coronary artery disease 1

07-29 + cad 1

05-28 + status post + mi 1

coronary artery with diffuse disease 1

Table E.3: Modifiers and extents used to identify patients

who met the recent cardiac event criterion
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Recent card. event: does not meet Count

33

father + mi 6

rule out + myocardial infarction 5

father + myocardial infarction 5

ruled out for + myocardial infarction 4

ruled out + myocardial infarction 3

chf 3

ruled out for + mi 2

mother + mi 2

coronary artery disease 2

without angiographic evidence of + coronary artery disease 1

without angiographic evidence of + coronary artery disease 1

without angiographic evidence of + coronary artery disease 1

without angiographic evidence + coronary artery disease 1

son + myocardial infarction 1

sister + sister + dm 1

sister + mi 1

sister + congestive heart failure 1

sister + cad 1

ruled out for + patient ruled out + mi 1

ruled out for + negative cardiac enzymes + mi 1

ruled out for + mi 1

ruled out for + acute myocardial infarction 1

ruled out + heart attack 1

rule out + mi 1

rule out + congestive heart failure 1

prior + inferior myocardial infarction 1

presenting with signs and symptoms of + chf 1

Continued on next page
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Table E.4 – continued from previous page

Recent cardiac event: does not meet Count

post + 1987 + mi 1

possible + cp/nstemi 1

patient’s mother + myocardial infarctions 1

paternal father + mi 1

no signs of + myocardial infarction 1

no history of premature + cad 1

no history of + mi 1

no history of + cad 1

no h/o + cad 1

no family history of + coronary artery disease 1

no family history + coronary artery disease 1

no evidence of any + coronary artery disease 1

no evidence of + chf 1

no evidence + congestive heart failure 1

no family history of + cad 1

never + congestive heart failure 1

negative cardiac enzymes + r/o + mi 1

mother + myocardial infarction 1

mother + heart attack 1

mother + cad 1

mi 1

maternal uncles and aunts + cad 1

however then became apparent that + chf 1

father w/ + cad 1

father + father + chf 1

father + coronary artery disease 1

father + chf 1

Continued on next page
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Table E.4 – continued from previous page

Recent cardiac event: does not meet Count

father + cad 1

family history + coronary artery disease 1

family history + cad 1

f + mi 1

doubt the presence of + doubt the presence + chf 1

did not show evidence of + severe heart disease 1

did not reveal + coronary artery disease 1

demonstrated no clinically significant + coronary artery disease 1

coronary arteries are normal 1

concerning for + stemi 1

concern for acute + myocardial infarction 1

concern for + chf 1

cardiac enzymes were negative for + myocardial infarction 1

cad 1

but cannot rule out + myocardial infarction 1

brother + myocardial infarction 1

brother + mi 1

2009 + myocardial infarction 1

2006 + 2006 + myocardial infarction 1

2000 + inferior myocardial infarction 1

Table E.4: Modifiers and extents used to identify patients

who did not meet the recent cardiac event criterion

181



APPENDIX E. SELECTION CRITERION EXTENT ANALYSIS

No cardiac event history: meets Count

36

no + congestive heart failure 2

no prior history + coronary artery disease 1

no previous history of + heart disease 1

no previous + mi 1

no history of + cardiac disease 1

no + myocardial infarction 1

Table E.5: Modifiers and extents used to identify patients

who met the no history of cardiac events criterion

No cardiac event history: does not meet Count

chf 35

coronary artery disease 29

congestive heart failure 24

cad 23

19

three vessel disease 6

two vessel coronary artery disease 5

nstemi 4

mi 4

history of + chf 4

myocardial infarction 3

history of + coronary artery disease 3

h/o + chf 3

3vd 3

Continued on next page
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Table E.6 – continued from previous page

No cardiac event history: does not meet Count

patient has a history of + coronary artery disease 2

hx of + chf 2

history + cad 2

congestive heart failure 2

2 vessel coronary artery disease 2

1vd 2

two-vessel coronary artery disease 1

three-vessel coronary artery disease 1

three vessel native disease 1

single (1) vessel coronary artery disease 1

s/p + mi 1

pvd 1

prior to admission + 3vd 1

prior + myocardial infarction 1

post coronary artery bypass grafting + coronary artery disease 1

post + post + myocardial infarction 1

post + myocardial infarction 1

post + coronary artery disease 1

pmh signif for + cad 1

patient’s history of + coronary artery disease 1

patient has a history of + two vessel disease 1

past medical history + three vessel coronary artery disease 1

past medical history + 2003 + coronary artery disease 1

one vessel disease 1

one vessel coronary artery disease 1

omi 1

non-st elevation myocardial infarction 1

Continued on next page
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Table E.6 – continued from previous page

No cardiac event history: does not meet Count

multi-vessel cad 1

mi + coronary artery disease 1

medical history + cad 1

long history of + coronary artery disease 1

long history of + congestive heart failure 1

likely + chf 1

known history of + coronary artery disease 1

inf. infarct 1

history of five + myocardial infarctions 1

history of + history of + congestive heart failure 1

history of + congestive heart failure 1

history of + cad 1

history of + coronary artery disease 1

history of + cad 1

history + congestive heart failure 1

history + chf 1

heart attacks 1

heart attack 1

h/o + cad 1

exacerbation + chf 1

dm 1

diastolic heart failure 1

cororary artery disease 1

coronary artery disease 1

consistent with + congestive heart failure 1

class ii + chf 1

cardiac disease 1

Continued on next page
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Table E.6 – continued from previous page

No cardiac event history: does not meet Count

age indeterminate + anteroseptal myocardial infarct 1

6/04 + cad 1

3 vessel disease 1

3 vessel coronary disease 1

3 vessel cad 1

2015-05-26 + coronary artery disease 1

2013-08-19 + coronary artery disease 1

2009 + nstemi 1

2008 + coronary artery disease 1

2008 + ast medical history of + cad 1

2005 + three vessel coronary artery disease 1

2005 + coronary artery disease 1

2003 + coronary artery disease 1

2003 + congestive heart failure 1

2 vessel disease 1

2 vessel disease 1

1997 + mi 1

1997 + coronary artery disease 1

1987 + cad 1

1987 + 1987 + mi 1

08-27 + chf 1

05-28 + coronary artery disease 1

status post + coronary artery disease + 2005 + mi 1

pt did not have any syptoms or signs of + chf 1

past medical history significant for + coronary artery disease 1

Continued on next page
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Table E.6 – continued from previous page

No cardiac event history: does not meet Count

Table E.6: Modifiers and extents used to identify pa-

tients who did not meet the no history of cardiac events

criterion
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Appendix F

Sample of augmented SecTag

database

Table F.1 shows a sample of the SecTag database augmented with information about

the type of concept that each line represents (metadata, document substructure com-

ponent and component topics), as well as the beginning and ending points of the

narrative container associated with that concept and whether the content of the con-

cept’s section is most likely to refer to the patient, the patient’s family, the hospital

itself, etc.
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Appendix G

NLP tools for the bioclinical and

temporal domains

While this dissertation does not seek to build a full NLP system for processing clinical

data for a mock case-control study, a fundamental principle of light annotation tasks

for domain experts is that the any resulting annotations should be in a format that

can be augmented by other sources. Naturally, this principle is useless if no other

sources for analyzing these types of files exist; fortunately there are a plethora of

available systems for parsing all types of texts, including bioclinical text. Because

this dissertation focuses on clinical data, and uses as a case study both diagnoses

and temporal analysis, this appendix provides an overview of some of the available

systems that could be used to augment the case-control annotation task described

in Part II. Naturally this is not a comprehensive listing of all the available clinical

and temporal tools that have been built, but it does provide a sense of what types of

other annotations and analyses could be added to the PERMIT corpus.
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AMBIT - Uses CLEF and myGrid to provide a tool for mining biomedical and clin-

ical text (Gaizauskas et al., 2003; Harkema et al., 2005). AMBIT is a multi-stage

processing engine for clinical and biomedical texts, using multiple components in-

cluding an information extraction engine for processing terminology, syntactic and

semantic information, and discourse; a terminology engine which maps to the UMLS;

a database of the texts and annotations produced by the other components; an inter-

face layer that allows web-based user access; and a query engine which provides an

interface for users to extract information from the database (Harkema et al., 2005).

While AMBIT is not currently available for use outside of the project it was created

for, the existence of the program helps illustrate how many approaches are being

taken in the processing of clinical documents and some of the successful methods

being used in this domain.

ConText - ConText is based on the NegEx (Chapman et al., 2001) algorithm for

identifying negations in clinical texts. ConText extends the negation detection algo-

rithm to determine whether contextual clue indicate if a conical condition is negated

or affirmed, recent, historical or hypothetical, and whether the experiencer is the

patient or someone else (Chapman et al., 2007). Both NegEx and ConText rely on

regular expressions for assigning labels to conditions, though ConText uses a more

extensive list of terms and more intricate rules for scope than NegEx. ConText per-

forms best at identifying the negation and hypothetical attributes for conditions, with

more errors in identifying the historical status (Harkema et al., 2009). ConText is

currently available for download, and was built to be easily integrated into other ap-

plications.
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cTAKES - The cTAKES (clinical Text Analysis and Knowledge Extraction System)

is an open-source natural language processing system developed for clinical narra-

tive data. It is a “modular system of pipelined components combining rule-based

and machine learning techniques” for the purposes of sentence boundary detection,

tokenization normalization, part-of-speech tagging, shallow parsing, named entity

recognition, and annotation of the status and negation of clinical conditions (which,

like ConText, is based on the NegEx algorithm) (Savova et al., 2010). The cTAKES

performs well on sentence boundary detection, tokenization, part-of-speech tagging

and shallow parsing, with each of those achieving accuracy scores between 0.924 and

0.949. The dataset that the cTAKES was trained and tested on has not been made

available, but cTAKES as a whole is available for download.

ELiXR - EliXR was developed at Columbia University for the purposes of parsing

eligibility criteria and representing the information in them in a standardized way

(Weng et al., 2011). EliXR is made up of a pipeline of processes: lexical marking,

semantic annotation, dependency parsing, pattern mining, grammar induction, and

criteria representation. Specifically, once the researchers had dependency trees for all

of the criteria they examined (1,000 different criteria from various studies), they mined

the tress for patterns and developed a set of 175 frequent patterns that represent 81%

of the test set (Weng et al., 2011). They suggest that the extracted templates can

be used to fill the gap between criteria representations and what attributes medical

researchers are looking for in their patients, and a preliminary version of this system

has been used help identify patients for studies (Li et al., 2008; Botsis et al., 2010).

Lancet - one of many programs developed for the i2b2 challenges (Uzuner et al.,
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2010a). Lancet was designed to extract information about medications from nar-

rative text in EHRs by using three supervised machine learning models.(Li et al.,

2010). Annotation was done by the Lancet researchers on a portion of the dataset

released for the i2b2 challenge, then trained the following components: medications,

dosages, and other information related to the taking of medicine were identified with

a conditional random fields model, medication names were linked to the other in-

formation (dosages, etc.) with the AdaBoost classification model, and sections of

narratives and lists were identified with a support vector machine model supplied by

the WEKA toolkit. Overall, Lancet performed well in the i2b2 challenge, though the

research team has since gone on to improve accuracy (Li et al., 2010).

MedLEE - MedLEE is the most comprehensive and widely-applied NLP system for

medical records that currently exists. It was originally made for processing radiolog-

ical reports but has since been extended to a variety of other fields and applications,

including mapping medical problems in patient records to ICD9 codes (Carlo et al.,

2010), assessing quality control measures for cardiovascular care (Chiang et al., 2010),

de-identifying medical records (Morrison et al., 2009), parsing discharge summaries

into XML and assigning UMLS codes (Wang et al., 2008), patient smoking status

(McCormick et al., 2008), identifying patients for medical studies (Li et al., 2008), for

encoding clinical records (Friedman et al., 2004), and so on. The MedLEE program

as described by Friedman (2000) is a modular system consisting of: a preprocessor

that identifies sentences, abbreviations, and “categorizes words and phrases”; a parser

used to identify sentence structure; a compositional regularizer for finding multi-word

phrases; an encoder for mapping words and phrases into UMLS and other coding

systems; and a recovery component that uses backup methods for extracting infor-
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mation where the previous components might have failed. MedLEE has, of course,

been expanded and modified over time. Currently it is available for commercial use

(http://www.nlpapplications.com/index.html).

SecTag - SecTag is a program used to identify section headers in patient H&P (his-

tory and physical) records. SecTag uses a sequential set of algorithms to process the

records, including: 1) a variation of the KnowledgeMap sentence identifier to identify

sentences and lists; 2) regular expressions, spell checking and stop word removal to

locate potential section headers; 3) use Bayesian probabilities to what sections each

sentence belongs to; 4) use Bayesian probabilities to disambiguate section header

classifications; and 5) identify the end of each section (Denny et al., 2009). The sec-

tion header classification is based on an ontology of headers that map to LOINC and

RxNorm data types (Denny et al., 2008). While the SecTag algorithm is not available

for download, the database is available for use, however, and its use in analyzing the

PERMIT corpus is discussed in Section 8.4.

The TARSQI Toolkit - The TARSQI Toolkit (TTK) is a “modular system for

automatic temporal and event annotation of natural language” (Verhagen and Puste-

jovsky, 2008), and was developed at Brandeis University. It takes text as input, and

outputs a TimeML annotation of the times and events in the document. The different

modules of the TTK are:

� Preprocessing - tokenizer, chunking, part of speech tagging

� EVITA - event recognizer (Sauŕı et al., 2005)

� BTime - temporal expression parser (previously GUTime)
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� Slinket - parser for modal expressions

� Temporal processing - set of modules used for creating and cleaning TLinks

(temporal relations):

– Blinker - a rule-based system using parts of speech

– S2T - a system that turns subordinating links into TLinks

– Classifier - MaxEnt classifier trained on TimeBank

– Sputlink/merger - runs closure and removes extraneous/conflicting links

The TTK has been tested against Time Bank, a corpus of 183 news articles from

various sources that have been annotated with TimeML (Pustejovsky et al., 2003).

It is available for download from http://timeml.org . While not initially designed

for processing clinical documents, a preliminary experiment aimed at determining

whether a set of patients were on a particular type of medication at the time they

were admitted to the hospital showed promising results for being able to reconfigure

the TTK to work with clinical documents (Stubbs and Harshfield, 2010).

TEXT2TABLE - A medical text summarization program that “extracts medical

events and date times from a text. It then converts them into a table structure”

(Aramaki et al., 2009). Specifically, TEXT2TABLE focuses on recognizing what

medical events are mentioned in a discharge summary, identifying whether or not

they happened (as opposed to being negated or hypothetical), and attempting to

identify when the events occurred so that a summary of all events can be generated.

In order to do this, TEXT2TABLE uses a 4-step process: event identification using

conditional random fields; normalization of dates, times, and events; time-event link-
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ing (in this case, events are linked to latest time/date); and identification of negative

events. In general, TEXT2TABLE performed well, obtaining an 85.8% average accu-

racy in identifying negative events and other modalities.

TimeText - TimeText was developed “to represent, extract, and reason about tempo-

ral information clinical text”, discharge summaries in particular (Zhou et al., 2007). It

uses a four-stage process for information extraction: a Temporal Constraint Structure

and Temporal Constraint Tagger for representing temporal expressions; the MedLEE

system (Friedman, 2000) for processing the narrative information in the discharge

summaries; a subsystem that uses medical and linguistic knowledge for handling

uncertainties in text (Zhou et al., 2006b); and a formal temporal model based on a

simple temporal constraint satisfaction problem. TimeText was used to generate con-

nections between medical events and times in discharge summaries, and the output

was compared against human annotators. The researchers found that the temporal

information in discharge summaries was extremely difficult to interpret consistently,

even among humans. TimeText was later extended to incorporate “fuzzy times” into

the constraint satisfaction problem (Lai et al., 2008).

TN-TIES - TN-TIES (Triage Note Temporal Information Extraction System) is used

to generate human-readable timelines from the triage notes that are recorded when a

patient comes to the Emergency Room of a hospital (Irvine et al., 2008). It is based

on work done by Zhou et al. (2006a) on modeling temporal relations in discharge

summaries, the same work that was the basis for TimeText. TN-TIES uses a three-

step process for analyzing the triage notes: first, documents are broken into chunks

to identify content phrases; then the chunks are sent to a classifier that determines
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what temporal class each chunk belongs to (here, temporal classes are ‘relative date

and time’, ‘duration’, ‘key event’, etc.); finally the classified chunks are sent to an

interpreter, where the program attempts to determine what order events occurred

in and when they occurred. Output from TN-TIES was compared to a manually

annotated corpus of triage notes. The system performed well on chunking, with 91%

accuracy, and accurately identified the relative date and time classes, but less well

on other, less frequent classes. Numbers for the interpreted data were not provided.

The work done with TN-TIES provides a useful datapoint for examining temporal

information in clinical texts.
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